个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
同济大学长聘特聘教授、博士生导师,同济大学新能源汽车工程中心副主任、燃料电池复合电源研究所所长,国家“万人计划”创新领军人才,科技部“中青年科技创新领军人才”,教育部“科技领军人才团队带头人”,科技部氢能领域规划技术专家,中国可再生能源学会氢能专委会委员,中国能源研究会燃料电池专委会委员,中国氢能标准化委员会委员,中国气瓶标准化委员会车用燃料气瓶分委员会委员。主要研究方向是氢能与燃料电池技术,包括可再生能源电解制氢技术、车载高压储氢技术与安全性、加氢站关键技术与氢安全评价体系、高性能燃料电池及系统关键技术等。近些年已发表包括能源动力、传质传热、电化学、材料科学等领域高水平学术期刊在内的学术论文100余篇,申请专利100余项,已获得授权发明专利50余项。多项技术成果填补了国内空白,并获得产业化应用,取得良好的经济效益和社会效益。部分研究成果获得中国汽车工业科技进步一等奖、中国可再生能源学会科技进步一等奖、教育部科技进步二等奖、上海市科技进步二等奖等。
张存满教授为新能源汽车工程中心副主任,燃料电池复合电源研究所所长。燃料电池复合电源研究所下属三个研究室,其中,氢能研究室团队包括:同济大学汽车学院吕洪副教授、薛明喆副教授、耿振助理教授、金黎明助理教授;此外,与本校机械与能源学院、航空航天与力学学院、材料学院相关教授、副教授,形成多学科交叉的技术联合攻关组;与国家电网、国家能源集团、国电投、华能、隆基股份、长城汽车等单位资深专家,形成企业导师、联合攻关机制;与美国通用汽车全球研发中心、密歇根大学、加州大学、加拿大滑铁卢大学、西安交大、天津大学等国内外科研机构知名学者,形成学术兼职、培育创新机制。
近5年承担的纵/横向项目/课题/子课题总经费超8000万元,科研仪器设备原值超过3亿元,可引领科研方向,保障创新产出,引导人才发展。
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg【部分代表性科研项目】
1、科技部国家重点研发计划项目,“液氢加氢站关键装备研制与安全性研究”(经费6000万元),2022.12-2025.12,项目负责人。
2、科技部国家重点研发计划项目子课题,“高效紧凑型碱性水电解制氢技术”(经费150万元),2022.12-2025.11,负责人。
3、科技部国家重点研发计划项目子课题,“碱性电解槽智能化与状态评估技术研究”(经费100万元),2019.05-2022.05,负责人。
4、国家863计划项目,“基于可再生能源制/储氢70MPa加氢站系统研制及示范” (经费2880万元),2012.12-2015.12,项目负责人。
5、国家863计划项目,“风电直接制氢及燃料电池发电系统技术”(经费1950万元),2014.01-2016.12,项目负责人。
6、东风汽车集团项目,“增程式燃料电池汽车委托开发”(经费1000万元),2020.01-2021.10,项目负责人。
7、中海油集团项目,“海上制氢工艺技术研究”(经费126万元),2020.12-2021.10,项目负责人。
8、国家电网集团项目,“氢电耦合系统技术研究”(经费500万元),2021.01-2023.06,项目负责人。
[1] Multi-stage porous nickel-iron oxide electrode for highcurrent alkaline water electrolysis, Advanced Functional Materials, 2023,2214792.
[2] Power evolution of fuel cell stack driven by anodegas diffusion layer degradation, Applied Energy, 2022, 313: 118858.
[3] Investigation of the thermal responses under gaschannel and land inside proton exchange membrane fuel cell with assemblypressure, Applied Energy, 2022, 308: 118377.
[4] Durability degradation mechanism and consistencyanalysis for proton exchange membrane fuel cell stack, Applied Energy, 2022,314: 119020.
[5] Over-potential tailored thin and dense lithium carbonategrowth in solid electrolyte interphase for advanced lithium ion batteries, AdvancedEnergy Materials, 2022, 12(15): 2103402.
[6] Enhanced mass transfer and proton conduction ofcathode catalyst layer for proton exchange membrane fuel cell through fillingpolyhedral oligomeric silsesquioxane, Journal of Power Sources, 2021, 487:229413.
[7] Failure behavior of gas diffusion layer in protonexchange membrane fuel cells, Journal of Power Sources, 2021, 515: 230655.
[8] Failure of cathode gas diffusion layer in 1 kW fuelcell stack under new European driving cycle, Applied Energy, 2021, 303: 117688.
[9] Research progress of heat transfer inside protonexchange membrane fuel cells, Journal of Power Sources, 2021, 492: 229613.
[10] Graph theory model and mechanism analysis of carbonfiber paper conductivity in fuel cell based on physical structure, Journal ofPower Sources, 2021, 491: 229546.
[11] Numerical analysis of static and dynamic heat transferbehaviors inside proton exchange membrane fuel cell, Journal of Power Sources,2021, 488: 229419.
[12] A novel approach based on semi-empirical model fordegradation prediction of fuel cells, Journal of Power Sources, 2021, 488:229435.
[13] Deep learning based prognostic framework towardsproton exchange membrane fuel cell for automotive application, Applied Energy,2021, 281: 115937.
[14] Pre-lithiation strategies for next‐generation practical lithium‐ion batteries, Advanced Science,2021, 8(12): 2005031.
[15] The controllable design of catalyst inks to enhancePEMFC performance: A review, Electrochemical Energy Reviews, 2021, 4(1):67-100.
[16] Metallically conductive TiB2 as a multi-functionalseparator modifier for improved lithium sulfur batteries, Journal of PowerSources, 2020, 448: 227336.
[17] Stainless steel bipolar plates for proton exchangemembrane fuel cells: Materials, flow channel design and forming processes, Journalof Power Sources, 2020, 451: 227783.
[18] Surface modification of Li-rich Mn-based layeredoxide cathodes: challenges, materials, methods, and characterization, AdvancedEnergy Materials, 2020, 10(41): 2002506.
[19] Target-oriented electrode constructions towardultra-fast and ultra-stable all-graphene lithium-ion capacitors, Energy StorageMaterials, 2019, 23: 409-417.
[20] A universal matching approach for high power-densityand high cycling-stability lithium ion capacitor, Journal of Power Sources,2019, 441: 227211.
[21] From rotating disk electrode to single cell:exploration of PtNi/C octahedral nanocrystal as practical proton exchangemembrane fuel cell cathode catalyst, Journal of Power Sources, 2018, 406:118-127.
[22] Electrode materials, electrolytes, and challengesin nonaqueous lithium-ion capacitors, Advanced Materials, 2018, 30(17): 1705670.
[23] Activated carbon from biomass transfer for high-energydensity Lithium-ion supercapacitors, Advanced Energy Materials, 2016, 6(18):1600802.
[24] Nitrogen-doped activated carbon for a high energyhybrid supercapacitor, Energy & Environmental Science, 2016, 9(1): 102-106.
[25] Highly active carbon-supported Pt nanoparticlesmodified and dealloyed with Co for the oxygen reduction reaction, Journal ofPower Sources, 2014, 270: 201-207.
文件上传中...