同济大学
导师风采
武妍
浏览量:764   转发量:7

个人信息

Personal Information

  • 教授
  • 导师类别:硕士,博士生导师
  • 性别: 女
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:计算机科学与技术学院(软件学院)
  • 所属专业: 计算机科学与技术
  • 邮箱 : yanwu@tongji.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

武妍,博士,同济大学电子与信息工程学院计算机科学与技术系,教授,博士生导师。2000年10月-2003年1月在复旦大学电子科学与技术博士后流动站进行科研工作。长期从事人工智能相关方向的教学和研究工作,主要研究方向和领域包括神经网络、深度学习、模式识别、计算机视觉以及自动驾驶等。主持和重点参与了多项国家重点研发计划、国家自然科学基金、上海市重点学科、上海市自然科学基金、铁道部基金、上海市博士后基金等项目。在国内外重要的学术刊物和学术会议上发表了150多篇学术研究论文,其中90多篇被SCI/EI收录,参与编著论著一部、主编教材两部。主要讲授课程包括《人工智能原理》、《机器学习》、《计算智能技术》、《数据结构》等。


  • 研究方向Research Directions
人工智能,深度学习,自动驾驶,计算机视觉
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
科研项目

目前承担的国家级科研项目:

[1] 2021/12-2024/11,国家重点研发计划课题, 2021YFB2501104,基于地图的车-路-云协同感知,子课题负责人

[2] 2020/01-2023/12:国家自然科学基金项目(联合基金),U19A2069,冰雪环境下汽车智能驾驶决策与人车协同控制的关键技术研究,参加

[3] 2024/1-2027/12:国家自然科学基金项目(联合基金),U23B2057,大规模体系知识计算平台构建技术研究,参加

[4] 2022/11-2025/10:国家重点研发计划项目,kz0080020221493,面向中小企业研发制造资源工业互联技术服务平台,参加


研究成果
近年来已发表论文:
  1. [1] Yujian Mo, Yan Wu, Junqiao Zhao, Hu Yinghao, Jijun Wang, and Jun Yan. Sparse Query Dense: Enhancing 3D Object Detection with Pseudo points,In ACM Multimedia 2024(Oral)
  2. [2] Yufei He, Yan Wu*, Yujian Mo, Yinghao Hu, Yuwei Zhang and Jijun Wang, Occlusion Are Underrated: An Occlusion-Attention Strategy Assembled in 3D Object Detectors, IEEE Sensor Journal, 2024,24(10):16502-16509
  3. [3]Xiaobo Zhu, Yan, Wu, et al. Dynamic Link Prediction for New Nodes in Temporal Graph Networks, IJCNN 2024
  4. [4] Xiaobo Zhu, Yan, Wu, Jin Che, Chao Wang, Liying Wang, Zhanheng Chen, Multi-perspective feedback-attention coupling model for continuous-time dynamic graphs, Machine Learning: Science and Technology,  5 (2024)035033, https://doi.org/10.1088/2632-2153/ad66af
  5. [5] Zhen Cui, Yan Wu, Qin-Hu Zhang, Si-Guo Wang,Ying He, and De-Shuang Huang. MV-CVIB: a microbiome-based multi-view convolutional variational information bottleneck for predicting metastatic colorectal cancer. Frontiers in Microbiology, 2023, 14, 1238199
  6. [6] Guo, Z. H., Wu, Y., Wang, S., Zhang, Q., Shi, J.M., Wang, Y. B., & Chen, Z. H.. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seqdata. BMC bioinformatics, 2024, 24(1), 1-14.
  7. [7] Zhu, Xiaobo, Yan, Wu, et al.Continuous-Time Dynamic Interaction Network Learning Based on Evolutionary Expectation,IEEE Transactions on Cognitive and Developmental Systems,2023
  8. [8]Yuwei Zhang, Yan Wu, Junqiao Zhao, Yinghao Hu, Yufei He, and Jijun Wang, Robust Traffic Light Recognition Pipeline Based on YOLOv8 for Autonomous Driving Systems, The 29th IEEE International Conference on Parallel and Distributed Systems,2023
  9. [9] Yan Wu, Yujun Liao, Wei Jiang, Junqiao Zhao, Feilin Liu, Yujian Mo, CLSD Continual learning for lane line segmentation across domains, International Conference on Intelligent Transportation Engineering, IEEE, 2022. pp. 580-585
  10. [10] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, Yujun Liao, Yujian Mo, Efficient Adaptive Upsampling Module for Real-time Semantic Segmentation, IJPRAI, 2022
  11. [11] Feilin Liu, Yan Wu, Xinneng Yang, Yujian Mo, Yujun Liao, Road Friction Coefficient Estimation via Weakly Supervised Semantic Segmentation and Uncertainty Estimation, IJPRAI, 2022
  12. [12] Yujun Liao, Yan Wu, Yujian Mo, Feilin Liu, Yufei He, Junqiao Zhao, UPC-Faster-RCNN: A Dynamic Self-Labeling Algorithm for Open-Set Object Detection Based on Unknown Proposal Clustering, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI ), 2022. pp. 1-6
  13. [13] Feilin Liu, Yan Wu, Xinneng Yang, Yujian Mo, Yujun Liao, Identification of Winter Road Friction Coefficient Based on Multi-task Distillation Attention Network, Pattern Analysis and Applications, 2022, 25(2): 441-449
  14. [14] Yujian Mo, Yan Wu, Xinneng Yang, Feilin Liu, Yujun Liao, Review the state-of-art technologies of semantic segmentation based on deep learning, Neurocomputing, 2022, 493:626-646
  15. [15] Hongtu Zhou, Xinneng Yang, Junqiao Zhao, Enwei Zhang, Lewen Cai,Chen Ye, Yan Wu, Real-time Multi-target Path Prediction and Planning for Autonomous Driving aided by FCN, CVCI’ 2022
  16. [16] Linting Guan, Yan Wu, Reduce the Difficulty of Incremental Learning with Self-Supervised Learning, IEEE Access, 2021, 9: 128540-128549
  17. [17] Yan Wu, Feilin Liu, Wei Jiang, Xinneng Yang, Multi Spatial Convolution Block for Lane Lines Semantic Segmentation, ICIC 2021, pp.31-41
  18. [18] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, GPU-Efficient Dense Convolutional Network for Real-time Semantic Segmentation, ICRA 2021,pp.553-570
  19. [19] JunmingZhang, Yan Wu, Competition convolutional neural network for sleepstage classification, Biomedical Signal Processing and Control, 2021, 64:102318
  20. [20] GuodongZhao,Yan Wu, An Efficient Kernel Based-Feature Extraction Using a Pull-PushMethod, Applied softcomputing, 2020, 96:106584-1-106584-12
  21. [21] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, Dense Dual-Path Network for Real-time Semantic Segmentation,The 15th Asian Conference on Computer Vision (ACCV), 2021, LNCS 12622, pp. 1–18
  22. [22] Yan Wu, FeilinLiu, Linting Guan, Xinneng Yang, A survey of vision-based road parameterestimating methods, ICIC 2020, LNAI 12465, pp.314-325
  23. [23] Wei Jiang, Yan Wu, DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block, International Conference on Robotics and Automation, Montreal, Canada, 2019, pp.5887-5862
  24. [24] Guodong Zhao, Yan Wu,Efficient Large Margin-Based Feature Extraction,Neural Processing Letter, Neural Processing Letters, 2019, 50:1257–1279
  25. [25] Tao Yang, Yan Wu, Junqiao Zhao, Linting Guan, Semantic Segmentation via Highly Fused Convolutional Network with Multiple Soft Cost Functions, Cognitive Systems Research, 2019, 53:20-30
  26. [26] Junming Zhang, Yan Wu, Complex-valued unsupervised convolutional neural networks for sleep stage classification, Computer Methods and Programs in Biomedicine, 2018,164: 181-191
  27. [27] Linting Guan, Yan Wu, Junqiao Zhao and Chen Ye, Learn to Detect Objects Incrementally, In , IEEE IV2018, Changshu, Jiangsu, China, 2018, pp.403-408
  28. [28] Yan Wu, Tao Yang, Junqiao, Zhao*, Linting Guan and Wei Jiang, VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View, In , IEEE IV2018, Changshu, Jiangsu, China, 2018, pp.1767-1772
  29. [29] JunqiaoZhao, Chen Ye, Yan Wu, Linting Guan, Lewen Cai, Lu Sun, Tao Yang, Xudong He,Jun Li, Yongchao Ding, Xinglian Zhang, Xinchen Wang, Jinglin Huang, EnweiZhang, Yewei Huang, Wei Jiang, Shaoming Zhang, Lu Xiong and Tiantian Feng, TiEV: The Tongji Intelligent Electric Vehicle in theIntelligent Vehicle Future Challenge of China, 2018 IEEE International Conference on Intelligent Transportation Systems(ITSC), 2018, pp.1303-1309
  30. [30] Linting Guan, Yan Wu, Junqiao Zhao, SCAN: Semantic Context Aware Network for Accurate Small Object Detection, International Journal of Computational Intelligent Systems, 2018, 11:951-961
  31. [31] Junming Zhang, Yan Wu, Automatic Sleep Stage Classification of Single-Channel EEG by Using Complex-Valued Convolutional Neural Network, Biomedizinische Technik/Biomedical Engineering , 2018,63(2):177-190
  32. [32] Junming Zhang, Yan Wu, A New Method for Automatic Sleep Stage Classification, IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(5):1097-1110
  33. [33] Yan Wu, Wei Jiang, Jiqian Li, Tao Yang, Speeding up Dilated Convolution Based Pedestrian Detection with Tensor Decomposition, ICIC 2017, Part Ⅲ, LNAI 10363, pp.117-127
  34. [34] Yan Wu, Tao Yang, Junqiao Zhao, Linting Guan, Jiqian Li, Fully Combined Convolutional Network with Soft Cost Function for Traffic Scene Parsing, ICIC 2017,PartⅠ , LNCS 10361, pp.725-731
  35. [35] Jiqian Li, Yan Wu, Junqiao Zhao, Linting Guan, Chen Ye, Tao Yang, Pedestrian Detection with Dilated Convolution, Region Proposal Network and Boosted Decision Trees, IJCNN 2017, 2017, pp.4052-4057
  36. [36] Yan Wu, Jiqian Li, Jin Bai, Multiple Classifiers Based Feature Fusion for RGB-D Object Recognition, International Journal of Pattern Recognition and Artificial Intelligence,  2017, 31(5):1750014-1-1750014-19
  37. [37] Guodong Zhao, Yan Wu, Gene Subset Selection for Cancer Classification Using Weight Local Modularity, Scientific Reports, 2016, 6:34759-34774
  38. [38] Junming Zhang, Yan Wu, Jing Bai, Fuqiang Chen, Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers, Transactions of the Institute of Measurement and Control, 2016,38(4):435-451
  39. [39] Jiqian Li, Yan Wu, Junming Zhang, Guodong Zhao, A Novel Method to Fix Numbers of Hidden Neurons in Deep Neural Networks, 2015 8th International Symposium on Computational Intelligence and Design(ISCID), 2015, Hangzhou, China
  40. [40]Fuqiang Chen, Yan Wu, Improving Image Recognition by Hierarchical Model and Denoising, 2015 International Conference on Natural Computation (ICNC), 2015, Zhangjiajie, China
  41. [41]Jing Bai, Yan Wu, Junming Zhang, Fuqiang Chen, Subset based deep learning for RGB-D object recognition, Neurocomputing, 2015,165:280-292
  42. [42]Guodong Zhao, Yan Wu, Fuqiang Chen, Jing Bai, Effective Feature Selection Using Feature Vector Graph For Classification, Neurocomputing, 2015, 151: 376-389
  43. [43]Bai J, Wu Y. SAE-RNN Deep Learning for RGB-DBased Object   Recognition, IntelligentComputing Theory, Springer International Publishing, 2014, pp.235-240.
  44. [44] Chen F.Q, Wu Y, Zhao G.D, Zhang J.M,Zhu M, Bai J. Contractive De-noising Auto-Encoder, Intelligent ComputingTheory, Springer International Publishing, 2014, pp.776-781
  45. [45] Ming Zhu, Yan Wu.  ANovel Deep Model for Image Recognition. 5th IEEE InternationalConference on Software Engineering and Service Sciences, 2014, pp.373-376
  46. [46] Yuanfang Ren, Yan Wu, ConvolutionalDeep Belief Networks for Feature Extraction of EEG Signal, 2014 InternationalJoint Conference on Neural Network(IJCNN) , 2014, pp.2850-2853
  47. [47] Rui Zhao, Zhihua Wei, Yan Wu, Cairong Zhao,Duoqian Miao, Bayes Network based CollaboratingControl Algorithm in Active Multi-Camera Network with Applications to ObjectTracking, Mathematical Problems in Engineering, 2014, DOI:  http://dx.doi.org/10.1155/2014/219367
  48. [48] Chen Fuqiang, Wu Yan,Bu Yude, Zhao Guodong Spectral Classification Using Restricted BoltzmannMachine, Publications of the Astronomical Society of Australia, 2014, DOI:http://dx.doi.org/10.1017/pasa.2013.38
  49. [49] Yuanfang Ren, YanWu,Yanbin Ge, A Co-training Algorithm for EEG Classificationwith Biomimetic Pattern Recognition and Sparse Representation, Neurocomputing,2014, 137: 212-222
  50. [50] Guodong Zhao, Yan Wu,Yuanfang Ren, Ming Zhu, EAMCD: An Efficient Algorithm based on Minimum CouplingDistance for community identification in complex networks, The European Physical Journal B, 2013,36(1): 14 DOI:10.1140/epjb/e2012-30697-5
  51. [51] Yuanfang Ren, YanWu, Anefficient algorithm for high-dimensional function optimization, Soft Computing,2013, 17(6): 995-1004
  52. [52] Yan Wu, Yanbin Ge, A Novel Method for Motor Imagery EEG AdaptiveClassification Based Biomimetic Pattern Recognition, Neurocomputing, 2013,116:280-290
  53. [53] Rui Zhao, Zhihua Wei, DuoqianMiao, Yan Wu, Lin Mei, Semi-supervised Vehicle Recognition: An ApproximateRegion Constrained Approach, Rough Setsand Knowledge Technology, Lecture Notes in Computer Science,Volume7414, 2012, pp. 161-166
  54. [54]Yanbin Ge, Yan Wu, A NewHybrid Method with Biomimetic Pattern Recognition and Sparse Representation forEEG, CCIS 304,P212-217, ICIC 2012
  55. [55]Rui Zhao, YanWu, Junbo Zhu, Zhihua Wei, Efficient Vehicle Identification UsingMPEG-7 Color Layout Descriptor,2011 IEEE International conference onSupernetworks and System Management, 2011. pp.128-131
  56. [56] 武妍,徐凯,基于增量半监督仿生模式识别的运动想象脑电识别,中国生物医学工程学报,2011,30(6):878-884
  57. [57] Yanbin Ge, Yan Wu, Towards Adaptive Classification of MotorImagery EEG Using Biomimetic Pattern Recognition, LNCS 6819, ICIC 2011, pp.455-460
  58. [58] Yan Wu, Hui Geng,Xiao-Yue Bian, A new method of signature verification based on biomimeticpattern recognition theory, The 2nd International Conference onBiomedical Engineering and Computer Science, Wuhan, China, 2011, pp.357-360
  59. [59] Yan Wu, Bing Xu, Xiao-Yue Bian, An improved PCNNmodel and a new removing algorithm of salt and pepper noise, 2010 Secondinternational conference on computational intelligence and natural computing,Wuhan, China, 2010, pp.178-182
  60. [60] Xu Kai, Wu Yan,Motor Imagery EEG Recognition Based OnBiomimetic Pattern Recognition,20103rd International Conference on Biomedical Engineering andInformatics(BMEI'10),Yantai,China, 2010,pp. 955-959
  61. [61] 王改良,武妍,用入侵的自适应遗传算法训练人工神经网络,红外与毫米波学报,2010,29(2):136-139

发明专利:

1、武妍、莫宇剑、刘飞麟,一种自动驾驶路面摩擦系数预测方法、电子设备及介质,ZL202110718997.4 (授权)

2、 武妍、户英豪,面向自动驾驶的融合高精地图的 3D 目标检测方法及介质,202311119183.4  (公开)

3、 武妍、莫宇剑,一种基于虚拟点云增强的 3D 目标检测方法,202310967469.1  (公开)

4、 武妍、张煜玮,基于 YOLO 双阶段策略的交通信号灯检测方法及系统,202311272411.1(公开)


学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

同济大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部