个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
陈宇飞,博士,副教授。2004年毕业于华东师范大学计算机科学与技术专业,获学士学位;2010年毕业于同济大学计算机应用专业,获工学博士学位;2010至2012年进入同济大学控制科学与工程博士后流动站工作;2008至2009年在德国达姆施塔特工业大学、德国弗劳恩霍夫图像数据处理研究所医学影像中心任访问研究员(Guest Researcher);于2012年加入同济大学电信学院CAD研究中心。主要研究领域为机器视觉、机器学习、医学数据分析,具体研究方向包括医学影像分析技术、计算机辅助疾病诊断(CAD)等。与医院长期合作进行医学CAD项目研发,针对目标区域精准分割、多源影像配准与融合、肿瘤不确定性决策等问题进行研究。
发表论文80余篇,其中一/二区/CCF-A/B (如TNNLS/TIP/KBS/AAAI/CVPR/MICCAI等)40余篇,授权发明专利12项;近年主持国家自然科学基金项目3项,国家重点研发计划课题1项,子课题1项,省部级项目2项;曾获上海新兴科学技术协同创新大赛优胜奖,受邀参加由上海市科委、上海市委JMRH办举办的“长三角高技术成果交易会”,对项目成果进行路演;带领团队多次获得ISICDM医学影像分析挑战赛一/二等奖,作为主要成员获上海市科学技术奖一等奖1项,三等奖1项,宁波市科学技术进步奖一等奖1项。
任医学影像国际会议MICCAI-CLIP主席、图像计算与数字医学国际研讨会ISICDM挑战赛主席、医学图像计算青年研讨会MICS委员会委员等,担任领域内多个重要学术期刊及会议的审稿人。为全国仿生学标委会委员、中国图象图形学学会会员、中国体视学会智能成像分会会员、上海市计算机学会人工智能专业委员会委员等。
我们是专注于人工智能在医学领域应用的团队,致力于运用AI技术解决医学难题,实现辅助医疗领域的突破与创新,探索人类健康领域的未知和可能。欢迎对此方向有兴趣、踏实认真、勤勉好学的同学加入我们,在轻松有趣、积极创新、合作互助的氛围中,共同探索前沿应用,追求更多突破!
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg1. 国家自然科学基金面上项目:结合证据理论与深度学习的胰腺肿瘤影像分析方法研究(编号:62173252),主持。
2. 国家自然科学基金重大研究计划培育项目:多源大数据环境下胰腺肿瘤辅助诊断决策方法研究(编号:92046008),主持。
3. 国家自然科学基金青年基金项目:基于领域知识的肝脏CT图割模型研究(编号:61103070),主持。
4. 国家重点研发计划课题:自主软件生态系统理论模式和标准规范研究(编号:2020YFB1712301),主持。
5. 国家自然科学基金项目:空间一致性约束与全局运动建模的特征匹配方法研究,排名第二。
6. 上海市科技创新行动计划项目课题:设备智能化数据分析与决策支持技术研究(编号:17511103502),主持。
7. 上海市科技创新行动计划项目课题:基于多源数据分析的智能检测技术研究(编号:18DZ1100704),主持。
8. 上海申康临床“五新”创新研发项目(重大临床研究项目):人工智能牙体牙髓病诊疗辅助系统的研发和临床应用,排名第二。
9. 上海市卫生健康委员会科研课题:基于CBCT实现患牙三维可视化与微创开髓设计的应用研究,排名第二。
10. 上海市科技创新行动计划医学创新研究专项:基于病理-影像深度学习的胰腺癌纤维化分级智能诊断研究,排名第二。
11. 上海市科技创新行动计划项目:基于CT、MRI放射组学诊断胰腺癌价值及临床意义研究,排名第三。
12. 同济大学青年优秀人才培养行动计划:计算机辅助肝肿瘤诊断系统关键技术研究(编号:0800219247),主持。
13. 中央高校基本科研业务费-学科交叉类(重点):沉浸式牙体牙髓病诊疗临床模拟训练系统的研发(编号:15042150012),主持。
(1)期刊论文
[1] G. Wang, Y. Chen.MCNet: Multiscale Clustering Network for Two-view Geometry Learning and FeatureMatching, IEEE/CAA Journal of Automatica Sinica, 2023.
[2] G. Wang, H. Shi, Y. Chen,B. Wu. Unsupervised Image-to-Image Translation via Long-Short Cycle-ConsistentAdversarial Networks, Applied Intelligence, 2023.
[3] P. Yang, K. Mao, Y.Gao, Z. Wang, J. Wang, Y. Chen, C. Ma , Y. Bian, C. Shao, J. Lu. Tumor size measurements of pancreaticcancer with neoadjuvant therapy based on RECIST guidelines: is MRI as effectiveas CT?. Cancer Imaging, 2023, 23(1): 1-10.
[4] Y. Chen, C. Xu, W. Ding, S. Sun, X. Yue, H.Fujita, Target-aware U-Net with Fuzzy Skip Connections for Refined PancreasSegmentation, Applied Soft Computing, 2022, 131(109818): 1-11.
[5] J. Wang, C. Ma, P. Yang, Z.Wang, Y. Chen, Y. Bian, C. Shao, J. Lu. Diffusion Weighted Imaging of the Abdomen:Correction for Gradient Nonlinearity Bias in Apparent Diffusion Coefficient, Journal of Magnetic Resonance Imaging, 2022: 1-9.
[6] S. Xu, Y. Chen, C.Ma, X. Yue. Deep Evidential Fusion Network for Medical Image Classification,International Journal of Approximate Reasoning, 2022, 150: 188-198.
[7] W. Tan, P. Liu, X. Li, S.Xu, Y. Chen, J. Yang. Segmentation of Lung Airways Based on DeepLearning Methods, IET Image Processing, 2022: 1-13.
[8] X. Zhou, X. Yue, Z. Xu, T. Denoeux, Y. Chen.PENet: Prior Evidence Deep Neural Network for Bladder Cancer Staging, Methods,2022, 207: 20-28.
[9] X. Yue, Y. Chen, B.Yuan, Y. Lv. Three-Way Image Classification with Evidential Deep ConvolutionalNeural Networks, Cognitive Computation, 2022, 14: 2074-2086.
[10] G.Wang, Y. Chen. SCM: Spatially Coherent Matching with Gaussian FieldLearning for Nonrigid Point Set Registration, IEEE Transactions on NeuralNetworks and Learning Systems, 2021, 32(1): 203-213.
[11] G. Wang, Y. Chen.Robust Feature Matching using Guided Local Outlier Factor, Pattern Recognition,2021, 117: 107986.
[12] X. Lin, Y. Fu, G. Ren, X.Yang, W. Duan, Y. Chen, Q. Zhang. Micro-Computed Tomography-GuidedArtificial Intelligence for Pulp Cavity and Tooth Segmentation on Cone-beam ComputedTomography, Journal of Endodontics, 2021, 47(12): 1933-1941.
[13] X. Yang, Y. Chen, X.Yue, C. Ma, P. Yang, Local Linear Embedding Based Interpolation Neural Networkin Pancreatic Tumor Segmentation, Applied Intelligence, 2021, 52(8): 8746-8756.
[14] W. Duan, Y. Chen, Q.Zhang, X. Lin, X. Yang. Refined tooth and pulp segmentation using U-Net in CBCTimage, Dentomaxillofacial Radiology, 2021, 49: 20200251.
[15] W. Tan, L. Zhou, X. Li, X.Yang, Y. Chen, J. Yang. Automated Vessel Segmentation in Lung CT and CTAImages via Deep Neural Networks, Journal of X-Ray Science and Technology, 2021,29(6): 1123–1137.
[16] W. Tan, P. Huang, X. Li, G. Ren, Y. Chen,J. Yang. Analysis of Segmentation of Lung Parenchyma Based on Deep LearningMethods, Journal of X-Ray Science and Technology, 2021, 29(6): 945–959.
[17] X. Yue, Y. Chen, D.Miao, H. Fujita. Fuzzy Neighborhood Covering for Three-way Classification,Information Sciences, 2020, 507: 795-808.
[18] X. Yue, X. Xiao, Y. Chen,J. Qian. Robust Neighborhood Covering Reduction with Determinantal PointProcess Sampling, Knowledge-Based Systems, 2020, 188: 105063.
[19] H. Zheng, Y. Chen, X.Yue, C. Ma, X. Liu, P. Yang, J. Lu. Deep Pancreas Segmentation with UncertainRegions of Shadowed Sets, Magnetic Resonance Imaging, 2020, 68: 45-52.
[20] X. Wu, Y. Chen, X.Liu, J. Shen, K. Zhuo, W. Zhao. Superpixel via Coarse-to-fine Boundary Shift,Applied Intelligence, 2020, 50: 2079-2092.
[21] G.Wang, Y. Chen, X. Zheng. Gaussian Field Consensus: A RobustNonparametric Matching Method for Outlier Rejection. Pattern Recognition, 2018,74: 305-316.
[22] X. Wu, X. Liu, Y. Chen, J. Shen, W. Zhao. A Graphbased Superpixel Generation Algorithm, Applied Intelligence, 2018, 48: 4485–4496.
[23] G. Wang, Q. Zhou, Y. Chen. Robust Non-rigid Point SetRegistration Using Spatially Constrained Gaussian Fields. IEEE Transactions onImage Processing, 2017, 26(4): 1759-1769.
[24] Y. Chen, X. Yue, H. Fujita, S. Fu.Three-way Decision Support for Diagnosis on Focal Liver Lesions. Knowledge-BasedSystems, 2017, 127: 85-99.
[25] Y. Chen, X. Yue, R. Y. D. Xu, H. Fujita. Region Scalable ActiveContour Model with Global Constraint. Knowledge-Based Systems, 2017, 120:57-73.
[26] G. Wang, Y. Chen. Fuzzy Correspondences GuidedGaussian Mixture Model for Point Set Registration, Knowledge-Based Systems,2017, 136: 200-209.
[27] X. Yue, Y. Chen, D. Miao, J. Qian. Tri-partition Neighborhood CoveringReduction for Robust Classification. International Journal of ApproximateReasoning, 2017, 83: 371-384.
[28] J. Hong, Y. Chen, X. Liu, W. Zhao, N. Jia, Q.Zhou. Image Structure Based Saliency Detection. Journal of Electronic Imaging,2017, 26(4): 043019.
[29] Y. Ren, Y. Chen, X. Yue.Supervised Sparsity Preserving Projections for Face Recognition. Computing andInformatics, 2017, 36(4): 815-836.
[30] G. Wang, Z. Wang, Y. Chen, Q. Zhou, W. Zhao. RemovingMismatches for Retinal Image Registration via Multi-Attribute-DrivenRegularized Mixture Model. Information Sciences, 2016, 372: 492-504.
[31] G. Wang, Z. Wang, Y. Chen, X. Liu, Y. Ren, L. Peng.Learning Coherent Vector Fields for Robust Point Matching under Manifold Regularization.Neurocomputing, 2016, 216: 393-401.
[32] Z. Wang, Y. Chen, Z. Zhu, W. Zhao. An AutomaticPanoramic Image Mosaic Method Based on Graph Model. Multimedia Tools andApplications, 2016, 75(5): 2725-2740.
[33] Y. Ren, Z. Wang, Y. Chen, X. Shan, W. Zhao. Sparsity PreservingDiscriminative Learning with Applications to Face Recognition. Journal ofElectronic Imaging, 2016, 25(1): 013005.
[34] G. Wang, Z. Wang, Y. Chen, W. Zhao. A Robust Non-rigid Point Set RegistrationMethod based on Asymmetric Gaussian Representation. Computer Vision andImage Understanding, 2015,141: 67-80.
[35] G. Wang, Z. Wang, Y.Chen, W. Zhao. RobustPoint Matching Method for Multimodal Retinal Image Registration. Biomedical Signal Processing and Control, 2015, 19: 68-76.
[36] Y. Chen, Z. Wang, J. Hu, W. Zhao, Q. Wu. The Domain Knowledge Based Graph-cutModel for Liver CT Segmentation, Biomedical Signal Processing and Control,2012, 7(6): 591-598.
(2)会议论文
[1] W. Liu, Y. Chen, X. Yue, C. Zhang, S. Xie.Trusted Multi-View Deep Learning with Opinion Aggregation, AAAI Conference onArtificial Intelligence (AAAI), 2023. (CCF-A)
[2] X. Yang, Y. Chen, X. Yue, S. Xu, C. Ma.T-distributed Spherical Feature Representation for Imbalanced Classification,AAAI Conference on Artificial Intelligence (AAAI), 2023. (CCF-A)
[3] M. Fichmann-Levital, S. Khawaled, Y. Chen, J.A. Kennedy, and M. Freiman.Uncertainty assessment in whole-body low dose PET reconstruction usingnon-parametric Bayesian deep learning approach. Proc. IEEE 20th InternationalSymposium on Biomedical Imaging (ISBI), 2023.
[4] G. Ren, Y. Chen, S. Qi, Y. Fu, Q. Zhang.Feature Patch Based Attention Model for Dental Caries Classification. Workshopon Clinical Image-Based Procedures (MICCAI-CLIP), 2023: 62-71.
[5] W. Liu, X. Yue, Y. Chen, T. Denoeux.Trusted Multi-View Deep Learning with Opinion Aggregation, AAAI Conference onArtificial Intelligence (AAAI), 2022. (CCF-A)
[6] Q. Wu, Y. Chen, N. Huang, X. Yue. WeaklySupervised Cerebrovascular Segmentation Network with Shape Prior and ModelIndicator. ACM International Conference on Multimedia Retrieval (ICMR), 2022:668-676. (CCF-B)
[7] X. Huang, X. Yue, Z. Xu, Y. Chen.Harnessing Deep Bladder Tumor Segmentation with Logical Clinical Knowledge,International Conference on Medical Image Computing and Computer AssistedIntervention (MICCAI), 2022, 13434: 725-735. (CCF-B)
[8] X. Yang, Y. Chen, X. Yue, X. Lin, Q. Zhang.Variational Synthesis Network for Generating Micro Computed Tomography fromCone Beam Computed Tomography, IEEE International Conference on Bioinformaticsand Biomedicine (BIBM), 2021: 1611-1614. (CCF-B)
[9] X. Zhou, X. Yue, Z. Xu, T. Denoeux, Y. Chen.Deep Neural Networks with Prior Evidence for Bladder Cancer Staging, IEEEInternational Conference on Bioinformatics and Biomedicine (BIBM), 2021:1221-1226. (CCF-B)
[10] X. Huang, X. Yue, Z. Xu, Y. Chen.Integrating General and Specific Priors into Deep Convolutional Neural Networksfor Bladder Tumor Segmentation, International Joint Conference on NeuralNetworks (IJCNN), 2021: 1-8. (CCF-C)
[11] S. Xu, Y. Chen, C. Ma, X. Yue. DeepEvidential Fusion Network for Image Classification, International Conference onBelief Functions: Theory and Applications (BELIEF), 2021: 185-193.
[12] G. Wang, H. Shi, Y. Chen.Self-Augmentation with Dual-Cycle Constraint for Unsupervised Image-to-ImageGeneration, International Conference on Tools with Artificial Intelligence (ICTAI),2021: 886-890. (CCF-C)
[13] C. Zhang, X. Yue, Y. Chen,Y. Lv. Integrating Diagnosis Rules into Deep Neural Networks for Bladder CancerStaging, ACM International Conference on Information and Knowledge Management(CIKM), 2020: 2301-2304.(CCF-B)
[14] L. Luo, Y. Chen, X. Liu, Q.Deng. Feature Aware and Bilinear Feature Equal Interaction Network forClick-Through Rate Prediction, International Conference on Neural InformationProcessing (ICONIP), 2020: 432-443. (CCF-C)
[15] H. Zheng, Y. Chen, X.Yue, C. Ma. Deep Interactive Segmentation of Uncertain Regions with ShadowedSets. International Symposium on Image Computing and Digital Medicine (ISICDM),2019: 244-248.
[16] X. Chen, Y. Chen, C. Ma, X. Liu, X. Tang.Classification of Pancreatic tumors based on MRI Images using 3D ConvolutionalNeural Networks. International Symposium on Image Computing and DigitalMedicine (ISICDM), 2018:92-96.
[17] W. Xu, X. Yue, Y. Chen, M. Reformat. Ensemble ofActive Contour Based Image Segmentation. IEEE International Conference on ImageProcessing (ICIP), 2017: 86-90.(CCF-C)
[18] G. Wang, Z. Wang, Y. Chen, Q. Zhou, W. Zhao.Context-Aware Gaussian Fields for Non-rigid Point Set Registration. IEEEConference on Computer Vision and Pattern Recognition (CVPR), 2016: 5811-5819. (CCF-A)
[19] G. Wang, Z. Wang, Y. Chen, W. Zhao, X. Liu. FuzzyCorrespondences and Kernel Density Estimation for Contaminated Point Set Registration. IEEE InternationalConference on Systems, Man, and Cybernetics, 2015: 1936-1941. (CCF-C)
本科生:
《高级语言程序设计》《高级语言程序设计(进阶)》《数据挖掘》
硕士研究生:
《数据挖掘》《人工智能》
博士研究生:
《智能医学基础与应用》《大数据分析算法》
文件上传中...