同济大学
导师风采
叶爱君
浏览量:456   转发量:47

个人信息

Personal Information

  • 教授
  • 导师类别:硕士,博士生导师
  • 性别: 女
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:土木工程学院
  • 所属专业: 土木工程  、 土木水利
  • 邮箱 : yeaijun@tongji.edu.cn
  • 工作电话 : 021-65982557

个人简介

Personal Profile

叶爱君,同济大学桥梁工程系教授、博士生导师,桥梁抗震研究室主任。长期从事桥梁工程教学和桥梁抗震研究,主持了四个国家级科研项目、以及苏通大桥等二十余个大型桥梁工程的抗震研究任务;参编《城市桥梁抗震设计规范》,主编上海《桥梁抗震设计标准》(双主编),主编CECS《桥梁抗震韧性评价标准》;出版专著《大跨度桥梁抗震设计》、编著教材《桥梁抗震》(一、二、三版),发表论文100余篇,其中SCI、EI索引论文70余篇;转让的发明专利已应用于10余座大型桥梁工程;获国家科技进步一等奖(No.3)一项、上海市科技进步一等奖(No.3)和二等奖(No.1)各一项,2012年享受国务院特殊津贴。上海市土木工程学会桥梁专业委员会委员,上海市、全国市政公用设施抗震专项论证专家。


  • 研究方向Research Directions
大跨度桥梁抗震设计,冲刷/液化场地桥梁抗震设计,桥梁抗震韧性评估与韧性提升,人工智能在桥梁抗震中的应用
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
团队展示

2023年终团队聚会



项目情况

主持在研科研项目:

1)既有冲刷桩基桥墩震后竖向承载性能评估方法,国家自然科学基金面上项目(52478200)

2)基于韧性的桥梁减隔震设计方法,国家自然科学基金面上项目(52178155)

3)苏通第二过江通道工程跨江段桥梁抗震性能研究,企业委托

4)穿鼻岛大桥桥梁结构抗震性能研究,企业委托

5)三类减隔震装置动力滞回耗能特性振动台试验研究,企业委托

6)《桥梁抗震韧性评价标准》编制,中国工程建设标准化协会

7)玛多地震桥梁震害分析及高烈度区中小桥合理抗震体系研究,企业委托


报考意向
招生信息
土木工程学院
硕士研究生
  • 序号
  • 专业
  • 招生人数
  • 年份
博士研究生
  • 序号
  • 专业
  • 招生人数
  • 年份
报考意向
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:
科研项目

主持在研科研项目:

1)既有冲刷桩基桥墩震后竖向承载性能评估方法,国家自然科学基金面上项目(52478200)

2)基于韧性的桥梁减隔震设计方法,国家自然科学基金面上项目(52178155)

3)苏通第二过江通道工程跨江段桥梁抗震性能研究,企业委托

4)穿鼻岛大桥桥梁结构抗震性能研究,企业委托

5)三类减隔震装置动力滞回耗能特性振动台试验研究,企业委托

6)《桥梁抗震韧性评价标准》编制,中国工程建设标准化协会

7)玛多地震桥梁震害分析及高烈度区中小桥合理抗震体系研究,企业委托


研究成果

近10年发表的主要论文:

WangJ., Ye A., Wang X.* (2023) “Quantifying easy-to-repair displacementductility and lateral strength of scouredbridge pile-group foundations in cohesionless soils: A classification-regressioncombination surrogate model.” Journal of Bridge Engineering (ASCE). 28(11): 04023080. DOI: 10.1061/JBENF2/BEENG-6201 (JCR-Q2)

Wang Jingcheng, AijunYe, and Lianxu Zhou*(2023)."Quasi-static tests and numerical simulations of ductile seismic behaviorfor scoured bridge pile group foundations considering pile uplift." Ocean Engineering, 290 (2023): 116370. https://doi.org/10.1016/j.oceaneng.2023.116370 (JCR-Q1)

Zhou L., Alam M.S., Wang X., Zhang P., Ye A.*(2023) “Optimal intensity measure selection and probabilistic seismic demand modelof pile group supported bridges in sandy soil considering variable scoureffects.” Ocean Engineering. 285: 115365. DOI: 10.1016/j.oceaneng.2023.115365 (JCR-Q1)

WangJ., Wang X., and Ye A.* (2023) “Ductile behavior of scoured RCpile-group foundations for bridges in cohesionless soils: Parametricincremental dynamic analysis.” Journal of Bridge Engineering (ASCE). 28(9): 04023057. DOI: 10.1061/JBENF2.BEENG-5942(JCR-Q2)

Zhou, L., Barbato, M., & Ye, A. * (2023).Pile Group Effect Modeling and Parametric Sensitivity Analysis of Scoured PileGroup Bridge Foundations in Sandy Soils under Lateral Loads, Journal of BridgeEngineering (ASCE), 28(8), https://doi.org/10.1061/JBENF2.BEENG-586 (JCR-Q2)

WangX., Alipour A., Wang J., Shang Y., Ye A.* (2023) “Seismic resonancebehavior of soil-pile-structure systems withscour effects: Shake-table tests and numerical analyses.” OceanEngineering. 283: 115052. DOI: 10.1016/j. oceaneng.2023.115052 (JCR-Q1)

WangX., Luo F., Ye A.* (2023) “A holistic framework for seismic analysis ofextended pile-shaft-supported bridges against different extents of liquefactionand lateral spreading.” Soil Dynamics and Earthquake Engineering.170: 107914. DOI: 10.1016/j.soildyn.2023.107914 (JCR-Q1)

WangJ., Wang X., Ye A.*, Guan Z. (2023) “Deformation-based pushover analysismethod for transverse seismicassessment of inverted Y-shaped pylons in kilometer-span cable-stayed bridges: Formulationand application to a case study.” SoilDynamics and Earthquake Engineering, 169: 107874. DOI: 10.1016/j. soildyn.2023.107874 (JCR-Q1)

Guo J., Ye A., Wang X., Guan Z.* (2023) “OpenSeesPyView:Python programming-based visualization and post-processing tool for OpenSeesPy.” SoftwareX, 21:101278. DOI: 10.1016/j.softx.2022.101278 (JCR-Q2)

WangJ., Wang X., Liu T., Ye A.* (2022) “Seismic uplift behavior and energydissipation mechanism of scoured bridge pile-group foundations: Quasi-statictest and numerical analysis.” Ocean Engineering, 266: 113172. DOI:10.1016/j.oceaneng.2022.113172(JCR-Q1)

Wang X., LiuT., Wang J., Ye A.* (2022) “Weakened section detailing for scouredpile-groupfoundations in sands toward post-earthquakeresilient behavior: Quasi-static tests.” Ocean Engineering, 266: 112897.DOI: 10.1016/j.oceaneng.2022.112897 (JCR-Q1)

Zhou L, Shahria Alam M, Song A, Ye A.*(2022),Probability-based residual displacement estimation of unbonded laminated rubberbearing supported highway bridges retrofitted with Transverse Steel Damper. EngineeringStructures, 272:115053. https://doi.org/10.1016/j.engstruct.2022.115053 (JCR-Q1)

Zhou, LX; Ye, AJ*; Chen, FY(2022),PostearthquakeVertical Load-Carrying Capacity of Extended Pile Shafts in Cohesionless Soils:Quasi-Static Test and Parametric Studies,Journal of BridgeEngineering, 27(8),https://doi.org/10.1061/(ASCE)BE.1943-5592.0001918(JCR-Q2)

Zhou, L., Barbato, M., & Ye, A. * (2021).Experimental Investigation of Postearthquake Vertical Load-Carrying Capacity ofScoured Reinforced Concrete Pile Group Bridge Foundations. Journal of Bridge Engineering,26(12), https://doi.org/10.1061/(ASCE)BE.1943-5592.0001799 (JCR-Q2)

Wang X., Ji B., Ye A.* (2020) “Seismic behavior ofpile-group-supported bridges in liquefiable soils with crusts subjected topotential scour: Insights from shake-table tests.” Journal of Geotechnical and Geoenvironmental Engineering (ASCE),146(5): 04020030.DOI: 10.1061/(ASCE)GT.1943-5606.0002250 (JCR-Q1)

LiuT., Wang X., Ye A.*(2020) “Roles of pile-group and cap-rotation effects on seismic failuremechanisms of partially-embedded bridge foundations: Quasi-static tests.” SoilDynamics and Earthquake Engineering, 132: 106074. DOI: 10.1016/j.soildyn.2020.106074 (JCR-Q2)

Wang X., Ye A.*,Shang Y., Zhou L. (2019) “Shake-table investigation of scoured RC pile-group-supportedbridgesin liquefiable and nonliquefiable soils.” Earthquake Engineering & StructuralDynamics, 48(11): 1217-1237. DOI: 10.1002/eqe.3186 (JCR-Q1)

Wang X.,Shafieezadeh A., Ye A.* (2019) “Optimal EDPs for post-earthquake damageassessment of extendedpile-shaft-supported bridges subjected to transverse spreading.” EarthquakeSpectra, 35(3): 1367-1396. DOI: 10.1193/090417EQS171M (JCR-Q2)

Wang X., Ye A.,Ji B.* (2019) “Fragility-based sensitivity analysis on the seismic performanceof pile-group-supported bridges in liquefiable ground undergoingscour potentials.” Engineering Structures, 198: 109427. DOI: 10.1016/j.engstruct.2019.109427 (JCR-Q1)

Zhou L., Wang X.,Ye A.* (2019) “Low cycle fatigue performance investigation on TransverseSteel Dampersfor bridges under ground motion sequences using shake-table tests.” EngineeringStructures, 196: 109328. DOI: 10.1016/ j.engstruct.2019.109328 (JCR-Q1)

Wang X., Fang J., Zhou L., Ye A.* (2019) “Transverse seismicfailure mechanism and ductility of reinforcedconcrete pylon for long span cable-stayed bridges: Model test and numericalanalysis.” Engineering Structures, 189: 206-221. DOI: 10.1016/j.engstruct.2019.03.045 (JCR-Q1)

Wang X., Ye A., Shafieezadeh A.*, Padgett J.E. (2019)“Fractional order optimal intensity measures for probabilistic seismic demand modeling of extendedpile-shaft-supported bridges in liquefiable and laterally spreading ground.” Soil Dynamics and EarthquakeEngineering, 120: 301-315. DOI: 10.1016/j.soildyn.2019. 02.012 (JCR-Q2)

Zhou L., Wang X.,Ye A.* (2019) “Shake table test on transverse steel damper seismicsystem for long span cable-stayed bridges.” Engineering Structures,179: 106-119. DOI: 10.1016/j.engstruct.2018.10.073(JCR-Q1)

Blanco G., Ye A., Wang X.*, Goicolea J. (2019) “Parametric pushover analysis onelevated RC pile-cap foundations for bridges in cohesionless soils.” Journalof Bridge Engineering (ASCE), 24(1): 04018104. DOI: 10.1061/(ASCE) BE.1943-5592.0001328 (JCR-Q2)

Wang X., Shafieezadeh A., Ye A.* (2018) “Optimal intensitymeasures for probabilistic seismic demand modeling of extendedpile-shaft-supported bridges in liquefied and laterally spreading ground.” Bulletinof Earthquake Engineering, 16(1): 229-257. DOI: 10.1007/s10518-017-0199-2 (JCR-Q2)

Wang X., Ye A.*,Shafieezadeh A., Li J. (2018) “Shallow-layer p-y relationships for micropiles embedded in saturated medium densesand using quasi-static test.” Geotechnical Testing Journal (ASTM),41(1): 193-206. DOI: 10.1520/GTJ20160289 (JCR-Q3)

Shang, Yu, Alipour,Alice, Ye, Aijun*(2018),Selection of Input Motion forSeismic Analysis of Scoured Pile-Supported  Bridge with Simplified Models. Journal of Structural Engineering(ASCE), 2018, 144(8),https://doi.org/10.1061/(ASCE)ST.1943-541X.0002067(JCR-Q2)

Shen X., Wang X.,Ye Q., Ye A.* (2017) “Seismic performance of Transverse Steel Damperseismic system for long span bridges.” Engineering Structures,141: 14-28. DOI:10.1016/j.engstruct.2017.03.014 (JCR-Q1)

Wang X., Luo F., Su Z., Ye A.* (2017) “Efficientfinite-element model for seismic response estimation of piles and soils inliquefied and laterally spreading ground considering shear localization.” InternationalJournal of Geomechanics (ASCE), 17(6): 06016039. DOI: 10.1061/(ASCE)GM.1943-5622.0000835(JCR-Q2)

HeZ., Liu W., Wang X., Ye A.*(2016) “Optimal force-based beam-column element size for reinforced concrete piles in bridges.” Journal of Bridge Engineering(ASCE), 21(11): 06016006. DOI: 10.1061/(ASCE) BE.1943-5592.0000926 (JCR-Q2)

Wang X., Ye A.*, He Z., Shang Y. (2016) “Quasi-static cyclic testing of elevated RCpile-cap foundation forbridge structures.”Journal of Bridge Engineering (ASCE), 21(2): 04015042. DOI: 10.1061/(ASCE)BE. 1943-5592.0000797 (JCR-Q2)

Xu Y., Shang Y. and Ye A. * (2016). “Dynamic interactionbetween bridge pier and its large pile foundation considering earthquake andscour depths”. Advances in StructuralEngineering, Vol.19(9),2016.9, P1390-1402, DOI: 10.1177/1369433216642077. (JCR-Q3)

Xing Shen; AlfredoCamara; Aijun Ye*(2015),Effects of Seismic Devices onTransverse Responses of Piers in the Sutong Bridge,EarthquakeEngineering and Engineering Vibration,Vol.14(4),https://doi.org/10.1007/s11803-015-0049-7  (JCR-Q2)

A. Camara, M. A.  Astiz and A. J. Ye(2014), "Fundamental Mode Estimationfor Modern Cable-Stayed Bridges Considering the Tower Flexibility." Journalof Bridge Engineering (ASCE),19(6),https://doi.org/10.1061/(ASCE)BE.1943-5592.0000585,(JCR-Q2)

王晓伟, 叶爱君*,吴学平,周连绪,宋开辉,李军,娄亮,魏新农,彭俊.梁式桥抗震韧性评估方法:I.基于专家意见的构件震后功能恢复模型[J].土木工程学报,2023. 在线发表 (2023.12.20), DOI: 10.15951/j.tmgcxb.23080638

周成, 叶爱君,王晓伟*,庞于涛,包绍伦.玛多7.4级地震野马滩大桥桥台纵桥向破坏机理分析[J].土木工程学报,2023. 在线发表 (2023.07.20). DOI: 10.15951/j.tmgcxb.23030175

王靖程, 叶爱君,王晓伟*,李越.液化大变形场地桩柱式墩桥梁震后竖向承载能力损失评估[J].工程力学,2023. 在线发表, DOI:10.6052/j.issn.1000-4750.2023.02.0073

王晓伟, 钱晋, 叶爱君*, 王靖程, 杨光怡.砂土场地桩柱式墩桥梁桩身地震需求简化计算方法[J]. 工程力学, 2023. 在线发表, DOI: 10.6052/j.issn.1000-4750.2022.10.0850

周连绪,叶爱君*,陈方有,镀锌铁丝约束混凝土应力-应变本构研究[J].土木工程学报,2021, 54(08):111-119,  DOI: 10.15951/j.tmgcxb.2021.08.009

周连绪, 叶爱君*. 千米级斜拉桥横向减震体系振动台试验[J]. 中国公路学报, 2019, 32(9) : 71-79. DOI: 10.19721/j.cnki.1001-7372.2019.09.007

王晓伟, 叶爱君*, 李闯. 场地液化对不同形式梁桥地震反应的影响[J]. 同济大学学报, 2018, 46(6): 759-766. DOI: 10.11908/j.issn.0253-374x.2018.06.007

王晓伟, 叶爱君*, 商宇. 砂土地基小直径单桩的浅层土p-y曲线[J]. 岩土工程学报, 2018, 40(9): 1736-1745. DOI: 10.11779/CJGE201809022

王晓伟, 布兰克, 叶爱君, 赫中营. 砂土中桥梁高桩承台基础的抗震延性能力参数分析[J]. 土木工程学报, 2018, 51(5): 112-121. DOI: 10.15951/j.tmgcxb.2018.05.013

叶爱君, 周连绪, 陈光, 王晓伟. 大跨度斜拉桥倒Y型混凝土桥塔的横向拟静力试验[J]. 土木工程学报, 2018, 51(9): 66-74. DOI: 10.15951/j.tmgcxb.2018.09.008

沈星,倪晓博,叶爱君,大跨度斜拉桥边墩横向抗震体系研究,中国公路学报,2016.11, Vol.29(11)

商宇, 叶爱君*, 王晓伟. 冲刷条件下的桩基桥梁振动台试验[J]. 中国公路学报, 2017, 30(12): 280-289. http://zgglxb.chd.edu.cn/CN/Y2017/V30/I12/280

叶爱君, 方家欣, 张少为, 王晓伟. 小箱梁桥的横向减震体系及其耗能特性[J]. 中国公路学报, 2017, 30(12): 21-29. http://zgglxb.chd.edu.cn/CN/Y2017/V30/I12/21

王晓伟, 李闯, 叶爱君, 商宇. 可液化河谷场地简支梁桥的地震反应分析[J]. 中国公路学报, 2016, 29(4): 85-95. http://zgglxb.chd.edu.cn/CN/Y2016/V29/I4/85

王晓伟, 叶爱君, 罗富元. 液化场地桩柱式基础桥梁结构地震反应的敏感性分析[J]. 工程力学, 2016, 33(8): 132-140. DOI: 10.6052/j.issn.1000-4750.2015.01.0022

王晓伟, 叶爱君, 沈星, 庞于涛. 大跨度桥梁边墩横向减震体系的地震易损性分析[J]. 同济大学学报, 2016, 44(3): 333-340. DOI: 10.11908/j.issn.0253-374x.2016.03.001

刘腾飞, 叶爱君, 王晓伟. 土体约束对桩柱式桥墩塑性铰长度的影响[J]. 同济大学学报, 2016, 44(10): 1490-1496. DOI: 10.11908/j.issn.0253-374x.2016.10.003

沈星,倪晓博,叶爱君,大跨度斜拉桥边墩新型横向钢阻尼器减震体系及设计方法,土木工程学报,2016.5,Vol.49(5),P110-119

沈星,叶爱君,大跨度斜拉桥倒Y型混凝土主塔横向抗震性能分析,中国公路学报,Vol.28(11),2015.11,P52-59

王晓伟, 赫中营, 叶爱君. 桥梁高桩承台基础地震破坏机理试验研究[J]. 同济大学学报, 2014, 42(9): 1313-1320. DOI: 10.3969/j.issn.0253-374x.2014.09.002

沈星, 叶爱君, 王晓伟. 双柱墩弹塑性位移能力简化计算方法[J]. 同济大学学报, 2014, 42(4): 513-519. DOI: 10.3969/j.issn.0253-374x.2014.04.003

李闯,叶爱君,余茂峰,公路减隔震桥梁的地震反应简化分析,哈尔滨工程大学学报,Vol.35(11),2014.11,P795-800

沈星,倪晓博,叶爱君,2014.11,桥梁新型横向金属阻尼器研究,振动与冲击,Vol.33(21),2014.11,P96-101

赫中营,叶爱君,力法非线性梁柱单元的合理单元长度划分,工程力学,Vol.31(7),2014.7,P178-184

赫中营,叶爱君, 群桩效应对砂土地基中高桩承台群桩基础抗震性能的影响,土木工程学报,Vol.47(1), 2014.1,P117-126


学生信息
学术型博士
专业学位硕士
学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

同济大学研究生院招生办公室

360eol提供技术支持

文件上传中...

分享
回到
首页
回到
顶部