同济大学
导师风采
李文浩
浏览量:349   转发量:

个人信息

Personal Information

  • 助理教授
  • 导师类别:硕士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:计算机科学与技术学院(软件学院)
  • 所属专业: 计算机科学与技术
  • 邮箱 : whli@tongji.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

I am a Tenure-Track Assistant Processor in the School of Software Engineering at the Tongji University. My research interests mainly include theoretical understanding, algorithmic improvements and practical application of AI agents, reinforcement learning, multi-agent systems and generative models.


I focus on developing robust, efficient, and practical decision-making algorithms. I am also interested in the application of (multi-agent) reinforcement learning and generative models in practical problems like multi-agent pathfinding, embodied AI and computational social science.


Prior to that, I was a postdoctoral fellow at The Chinese University of Hong Kong, Shenzhen supervised by Prof. Hongyuan Zha. I received my Ph.D. from the School of Computer Science and Technology, East China Normal University in 2022, advised by Prof. Aimin Zhou and Prof. Hongyuan Zha. I received my B.E. from the School of Information Science and Engineering, Lanzhou University in 2016. During my Ph.D, I was a research intern in the Machine Learning Group at Tencent AI Lab advised by Dr. Dijun Luo. I was also a member of Tencent Rhion-Bird Talent Cultivation Program.


Please drop me an email if you are interested in collaborating with me.


Google Scholar: https://scholar.google.com/citations?user=HAtzuaYAAAAJ&hl=en

Personal Website: https://ewanlee.weebly.com/


  • 研究方向Research Directions
AI Agent,Deep Reinforcement Learning,Multi-Agent System,Deep Generative Model,Computational Social Science
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
项目情况

[P6] LLM-driven Companion Robot Development and Industrialization. Shanghai Foundation for Development of Science and Technology. Dec 2024 - Dec 2027. Co-investigator, PI: Danyang Sun

[P5] Task-Agnostic AI Agents Architecture Search and Optimization. Shanghai Sailing Program. Dec 2024 - Dec 2027. Principal inverstigator.

[P4] Reputation System based Multi-Agent Reinforcement Learning. Young Scientists Fund of the National Natural Science Foundation of China. Jan 2025 – Dec 2027. Principal inverstigator.

[P3] Policy Optimization for High-Dimensional Graph-Structured Action Space. China Postdoctoral Science Foundation. Nov 2022 – Jun 2024. Principal inverstigator.

[P2] Advanced Machine Learning for Structured Adaptive Self-evolution. The National Key Research and Development Program of China. 2021-2023. Participant.

[P1] Data Governance for Open Sharing of Multimodal Medical Data. Science and Technology Innovation Program of Shanghai. 2020-2022. Participant.


报考意向
招生信息
计算机科学与技术学院(软件学院)
硕士研究生
  • 序号
  • 专业
  • 招生人数
  • 年份
报考意向
姓名:
手机号码:
邮箱:
毕业院校:
所学专业:
报考类型:
博士
硕士
个人简历*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
成绩单*

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
其他材料:

上传附件

支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg
备注:
科研项目

[P6] LLM-driven Companion Robot Development and Industrialization. Shanghai Foundation for Development of Science and Technology. Dec 2024 - Dec 2027. Co-investigator, PI: Danyang Sun

[P5] Task-Agnostic AI Agents Architecture Search and Optimization. Shanghai Sailing Program. Dec 2024 - Dec 2027. Principal inverstigator.

[P4] Reputation System based Multi-Agent Reinforcement Learning. Young Scientists Fund of the National Natural Science Foundation of China. Jan 2025 – Dec 2027. Principal inverstigator.

[P3] Policy Optimization for High-Dimensional Graph-Structured Action Space. China Postdoctoral Science Foundation. Nov 2022 – Jun 2024. Principal inverstigator.

[P2] Advanced Machine Learning for Structured Adaptive Self-evolution. The National Key Research and Development Program of China. 2021-2023. Participant.

[P1] Data Governance for Open Sharing of Multimodal Medical Data. Science and Technology Innovation Program of Shanghai. 2020-2022. Participant.


研究成果

Journals

[J4] Flexible Fully-Decentralized Approximate Actor-Critic for Cooperative Multi-Agent Reinforcement Learning. Wenhao Li, Bo Jin, Xiangfeng Wang, Junchi Yan, Hongyuan Zha. Journal of Machine Learning Research, (JMLR, CCF-A), 24.178: 1-75, 2023, long paper (75 pages).

[J3] Structured Cooperative Reinforcement Learning with Time-varying Composite Action Space. Wenhao Li, Xiangfeng Wang, Bo Jin, Dijun Luo, Hongyuan Zha. IEEE Transactions on Pattern Analysis and Machine Intelligence, (TPMAI, CCF-A), 44.11: 8618-8634, 2022. IF: 24.314

[J2] Distributed and Parallel ADMM for Structured Nonconvex Optimization Problem. Xiangfeng Wang, Junchi Yan, Bo Jin, Wenhao Li. IEEE Transactions on Cybernetics, (TCYB, SCI-Q1), 51.9: 4540-4552, 2019. IF: 19.118

[J1] Learning Structured Communication for Multi-Agent Reinforcement Learning. Junjie Sheng, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenhao Li, Tsung-Hui Chang, Jun Wang, Hongyuan Zha. Journal of Autonomous Agents and Multiagent Systems, (JAAMAS, CCF-B), 36.2: 50, 2022.


Conferences

[C13] Carbon Market Simulation with Adaptive Mechanism Design. Han Wang, Wenhao Li, Hongyuan Zha, Baoxiang Wang. International Joint Conference on Artificial Intelligence (IJCAI, CCF-A), 2024.

[C12] Efficient Planning with Latent Diffusion. Wenhao Li. International Conference on Learning Representations (ICLR, TH-CPL-A), Single author,  2024.

[C11] Hierarchical Diffusion for Offline Decision Making. Wenhao Li, Xiangfeng Wang, Bo Jin, Hongyuan Zha. International Conference on Machine Learning (ICML, CCF-A), 2023.

[C10] Dealing with Non-Stationarity in Multi-Agent Reinforcement Learning via Trust Region Decomposition. Wenhao Li, Xiangfeng Wang, Bo Jin, Junjie Sheng, Hongyuan Zha. International Conference on Learning Representations (ICLR, TH-CPL-A), 2022.

[C9] Information Design in Multi-Agent Reinforcement Learning. Yue Lin, Wenhao Li, Hongyuan Zha, Baoxiang Wang. Neural Information Processing Systems (NeurIPS, CCF-A), 2023.

[C8] Iteratively-Refined Interactive 3D Medical Image Segmentation with Multi-Agent Reinforcement Learning. Xuan Liao, Wenhao Li, Qisen Xu, Xiangfeng Wang, Bo Jin, Xiaoyun Zhang, Yanfeng Wang, Ya Zhang. The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR, CCF-A), 2020.

[C7] VMAgent: Scheduling Simulator for Reinforcement Learning. Sheng, Junjie, Shengliang Cai, Haochuan Cui, Wenhao Li, Yun Hua, Bo Jin, Wenli Zhou et al. International Joint Conference on Artificial Intelligence (IJCAI, CCF-A), 2022.

[C6] HMRL: Hyper-Meta Learning for Sparse Reward Reinforcement Learning Problem. Yun Hua, Xiangfeng Wang, Bo Jin, Wenhao Li, Junchi Yan, Xiaofeng He, Hongyuan Zha. International Conference on Knowledge Discovery and Data Mining (KDD, CCF-A), 2021.

[C5] Diverse Policy Optimization for Structured Action Space. Wenhao Li, Baoxiang Wang, Shanchao Yang and Hongyuan Zha. International Conference on Autonomous Agents and Multiagent Systems (AAMAS, CCF-B), Oral, 2023.

[C4] Model-Based Reinforcement Learning for Auto-Bidding in Display Advertising. Shuang Chen, Qisen Xu, Liang Zhang, Yongbo Jin, Wenhao Li and Linjian Mo. International Conference on Autonomous Agents and Multiagent Systems (AAMAS, CCF-B), Corresponding author, Oral, 2023.

[C3] Structured Diversification Emergence via Reinforced Organization Control and Hierachical Consensus Learning. Wenhao Li, Xiangfeng Wang, Bo Jin, Junjie Sheng, Yun Hua, Hongyuan Zha. International Conference on Autonomous Agents and Multiagent Systems (AAMAS, CCF-B), Oral, 2021.

[C2] Multi-Agent Path Finding with Prioritized Communication Learning. Wenhao Li*, Hongjun Chen*, Bo Jin, Wenzhe Tan, Hongyuan Zha and Xiangfeng Wang. International Conference on Robotics and Automation (ICRA, CCF-B), 2022.

[C1] Learning Optimal “Pigovian Tax” in Sequential Social Dilemmas. Yun Hua, Shang Gao, Wenhao Li, Bo Jin, Xiangfeng Wang and Hongyuan Zha. International Conference on Autonomous Agents and Multiagent Systems (AAMAS, CCF-B), Extended abstract, 2023.

科研奖励

  • Nomination Award for Excellent Doctoral Dissertation Award, by Shanghai Computer Society, 2023
  • Excellent Graduate Award, by Shanghai Municipal Education Commission, 2022
  • Outstanding Doctoral Thesis, by East China Normal University, 2022
  •     Thesis: Cooperation Promotion Multi-Agent Reinforcement Learning
  • Tencent Rhion-Bird Talent Cultivation, 2020
  • Excellent Graduate Award, by Lanzhou University, 2016


社会服务

PC member/Reviewer:

  • International Conference on Learning Representations (ICLR), 2022-2025
  • Conference on Neural Information Processing Systems (NeurIPS), 2023
  • International Conference on Machine Learning (ICML), 2024
  • AAAI Conference on Artificial Intelligence (AAAI), 2025
  • IEEE Transactions on Intelligent Vehicles (T-IV), 2023
  • IEEE Transactions on Emerging Topics in Computational Intelligence (T-ETCI), 2023

学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

同济大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部