
武妍,博士,同济大学电子与信息工程学院计算机科学与技术系,教授,博士生导师。2000年10月-2003年1月在复旦大学电子科学与技术博士后流动站进行科研工作。长期从事人工智能相关方向的教学和研究工作,主要研究方向和领域包括神经网络、深度学习、模式识别、计算机视觉以及自动驾驶等。主持和重点参与了多项国家重点研发计划、国家自然科学基金、上海市重点学科、上海市自然科学基金、铁道部基金、上海市博士后基金等项目。在国内外重要的学术刊物和学术会议上发表了150多篇学术研究论文,其中90多篇被SCI/EI收录,参与编著论著一部、主编教材两部。主要讲授课程包括《人工智能原理》、《机器学习》、《计算智能技术》、《数据结构》等。
目前承担的国家级科研项目:
[1] 2021/12-2024/11,国家重点研发计划课题, 2021YFB2501104,基于地图的车-路-云协同感知,子课题负责人
[2] 2020/01-2023/12:国家自然科学基金项目(联合基金),U19A2069,冰雪环境下汽车智能驾驶决策与人车协同控制的关键技术研究,参加
[3] 2024/1-2027/12:国家自然科学基金项目(联合基金),U23B2057,大规模体系知识计算平台构建技术研究,参加
[4] 2022/11-2025/10:国家重点研发计划项目,kz0080020221493,面向中小企业研发制造资源工业互联技术服务平台,参加
近年来已发表论文:
- [1] Yujian Mo, Yan Wu, Junqiao Zhao, Hu Yinghao, Jijun Wang, and Jun Yan. Sparse Query Dense: Enhancing 3D Object Detection with Pseudo points,In ACM Multimedia 2024(Oral)
- [2] Yufei He, Yan Wu*, Yujian Mo, Yinghao Hu, Yuwei Zhang and Jijun Wang, Occlusion Are Underrated: An Occlusion-Attention Strategy Assembled in 3D Object Detectors, IEEE Sensor Journal, 2024,24(10):16502-16509
- [3]Xiaobo Zhu, Yan, Wu, et al. Dynamic Link Prediction for New Nodes in Temporal Graph Networks, IJCNN 2024
- [4] Xiaobo Zhu, Yan, Wu, Jin Che, Chao Wang, Liying Wang, Zhanheng Chen, Multi-perspective feedback-attention coupling model for continuous-time dynamic graphs, Machine Learning: Science and Technology, 5 (2024)035033, https://doi.org/10.1088/2632-2153/ad66af
- [5] Zhen Cui, Yan Wu, Qin-Hu Zhang, Si-Guo Wang,Ying He, and De-Shuang Huang. MV-CVIB: a microbiome-based multi-view convolutional variational information bottleneck for predicting metastatic colorectal cancer. Frontiers in Microbiology, 2023, 14, 1238199
- [6] Guo, Z. H., Wu, Y., Wang, S., Zhang, Q., Shi, J.M., Wang, Y. B., & Chen, Z. H.. scInterpreter: a knowledge-regularized generative model for interpretably integrating scRNA-seqdata. BMC bioinformatics, 2024, 24(1), 1-14.
- [7] Zhu, Xiaobo, Yan, Wu, et al.Continuous-Time Dynamic Interaction Network Learning Based on Evolutionary Expectation,IEEE Transactions on Cognitive and Developmental Systems,2023
- [8]Yuwei Zhang, Yan Wu, Junqiao Zhao, Yinghao Hu, Yufei He, and Jijun Wang, Robust Traffic Light Recognition Pipeline Based on YOLOv8 for Autonomous Driving Systems, The 29th IEEE International Conference on Parallel and Distributed Systems,2023
- [9] Yan Wu, Yujun Liao, Wei Jiang, Junqiao Zhao, Feilin Liu, Yujian Mo, CLSD Continual learning for lane line segmentation across domains, International Conference on Intelligent Transportation Engineering, IEEE, 2022. pp. 580-585
- [10] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, Yujun Liao, Yujian Mo, Efficient Adaptive Upsampling Module for Real-time Semantic Segmentation, IJPRAI, 2022
- [11] Feilin Liu, Yan Wu, Xinneng Yang, Yujian Mo, Yujun Liao, Road Friction Coefficient Estimation via Weakly Supervised Semantic Segmentation and Uncertainty Estimation, IJPRAI, 2022
- [12] Yujun Liao, Yan Wu, Yujian Mo, Feilin Liu, Yufei He, Junqiao Zhao, UPC-Faster-RCNN: A Dynamic Self-Labeling Algorithm for Open-Set Object Detection Based on Unknown Proposal Clustering, IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI ), 2022. pp. 1-6
- [13] Feilin Liu, Yan Wu, Xinneng Yang, Yujian Mo, Yujun Liao, Identification of Winter Road Friction Coefficient Based on Multi-task Distillation Attention Network, Pattern Analysis and Applications, 2022, 25(2): 441-449
- [14] Yujian Mo, Yan Wu, Xinneng Yang, Feilin Liu, Yujun Liao, Review the state-of-art technologies of semantic segmentation based on deep learning, Neurocomputing, 2022, 493:626-646
- [15] Hongtu Zhou, Xinneng Yang, Junqiao Zhao, Enwei Zhang, Lewen Cai,Chen Ye, Yan Wu, Real-time Multi-target Path Prediction and Planning for Autonomous Driving aided by FCN, CVCI’ 2022
- [16] Linting Guan, Yan Wu, Reduce the Difficulty of Incremental Learning with Self-Supervised Learning, IEEE Access, 2021, 9: 128540-128549
- [17] Yan Wu, Feilin Liu, Wei Jiang, Xinneng Yang, Multi Spatial Convolution Block for Lane Lines Semantic Segmentation, ICIC 2021, pp.31-41
- [18] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, GPU-Efficient Dense Convolutional Network for Real-time Semantic Segmentation, ICRA 2021,pp.553-570
- [19] JunmingZhang, Yan Wu, Competition convolutional neural network for sleepstage classification, Biomedical Signal Processing and Control, 2021, 64:102318
- [20] GuodongZhao,Yan Wu, An Efficient Kernel Based-Feature Extraction Using a Pull-PushMethod, Applied softcomputing, 2020, 96:106584-1-106584-12
- [21] Xinneng Yang, Yan Wu, Junqiao Zhao, Feilin Liu, Dense Dual-Path Network for Real-time Semantic Segmentation,The 15th Asian Conference on Computer Vision (ACCV), 2021, LNCS 12622, pp. 1–18
- [22] Yan Wu, FeilinLiu, Linting Guan, Xinneng Yang, A survey of vision-based road parameterestimating methods, ICIC 2020, LNAI 12465, pp.314-325
- [23] Wei Jiang, Yan Wu, DFNet: Semantic Segmentation on Panoramic Images with Dynamic Loss Weights and Residual Fusion Block, International Conference on Robotics and Automation, Montreal, Canada, 2019, pp.5887-5862
- [24] Guodong Zhao, Yan Wu,Efficient Large Margin-Based Feature Extraction,Neural Processing Letter, Neural Processing Letters, 2019, 50:1257–1279
- [25] Tao Yang, Yan Wu, Junqiao Zhao, Linting Guan, Semantic Segmentation via Highly Fused Convolutional Network with Multiple Soft Cost Functions, Cognitive Systems Research, 2019, 53:20-30
- [26] Junming Zhang, Yan Wu, Complex-valued unsupervised convolutional neural networks for sleep stage classification, Computer Methods and Programs in Biomedicine, 2018,164: 181-191
- [27] Linting Guan, Yan Wu, Junqiao Zhao and Chen Ye, Learn to Detect Objects Incrementally, In , IEEE IV2018, Changshu, Jiangsu, China, 2018, pp.403-408
- [28] Yan Wu, Tao Yang, Junqiao, Zhao*, Linting Guan and Wei Jiang, VH-HFCN based Parking Slot and Lane Markings Segmentation on Panoramic Surround View, In , IEEE IV2018, Changshu, Jiangsu, China, 2018, pp.1767-1772
- [29] JunqiaoZhao, Chen Ye, Yan Wu, Linting Guan, Lewen Cai, Lu Sun, Tao Yang, Xudong He,Jun Li, Yongchao Ding, Xinglian Zhang, Xinchen Wang, Jinglin Huang, EnweiZhang, Yewei Huang, Wei Jiang, Shaoming Zhang, Lu Xiong and Tiantian Feng, TiEV: The Tongji Intelligent Electric Vehicle in theIntelligent Vehicle Future Challenge of China, 2018 IEEE International Conference on Intelligent Transportation Systems(ITSC), 2018, pp.1303-1309
- [30] Linting Guan, Yan Wu, Junqiao Zhao, SCAN: Semantic Context Aware Network for Accurate Small Object Detection, International Journal of Computational Intelligent Systems, 2018, 11:951-961
- [31] Junming Zhang, Yan Wu, Automatic Sleep Stage Classification of Single-Channel EEG by Using Complex-Valued Convolutional Neural Network, Biomedizinische Technik/Biomedical Engineering , 2018,63(2):177-190
- [32] Junming Zhang, Yan Wu, A New Method for Automatic Sleep Stage Classification, IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(5):1097-1110
- [33] Yan Wu, Wei Jiang, Jiqian Li, Tao Yang, Speeding up Dilated Convolution Based Pedestrian Detection with Tensor Decomposition, ICIC 2017, Part Ⅲ, LNAI 10363, pp.117-127
- [34] Yan Wu, Tao Yang, Junqiao Zhao, Linting Guan, Jiqian Li, Fully Combined Convolutional Network with Soft Cost Function for Traffic Scene Parsing, ICIC 2017,PartⅠ , LNCS 10361, pp.725-731
- [35] Jiqian Li, Yan Wu, Junqiao Zhao, Linting Guan, Chen Ye, Tao Yang, Pedestrian Detection with Dilated Convolution, Region Proposal Network and Boosted Decision Trees, IJCNN 2017, 2017, pp.4052-4057
- [36] Yan Wu, Jiqian Li, Jin Bai, Multiple Classifiers Based Feature Fusion for RGB-D Object Recognition, International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(5):1750014-1-1750014-19
- [37] Guodong Zhao, Yan Wu, Gene Subset Selection for Cancer Classification Using Weight Local Modularity, Scientific Reports, 2016, 6:34759-34774
- [38] Junming Zhang, Yan Wu, Jing Bai, Fuqiang Chen, Automatic sleep stage classification based on sparse deep belief net and combination of multiple classifiers, Transactions of the Institute of Measurement and Control, 2016,38(4):435-451
- [39] Jiqian Li, Yan Wu, Junming Zhang, Guodong Zhao, A Novel Method to Fix Numbers of Hidden Neurons in Deep Neural Networks, 2015 8th International Symposium on Computational Intelligence and Design(ISCID), 2015, Hangzhou, China
- [40]Fuqiang Chen, Yan Wu, Improving Image Recognition by Hierarchical Model and Denoising, 2015 International Conference on Natural Computation (ICNC), 2015, Zhangjiajie, China
- [41]Jing Bai, Yan Wu, Junming Zhang, Fuqiang Chen, Subset based deep learning for RGB-D object recognition, Neurocomputing, 2015,165:280-292
- [42]Guodong Zhao, Yan Wu, Fuqiang Chen, Jing Bai, Effective Feature Selection Using Feature Vector Graph For Classification, Neurocomputing, 2015, 151: 376-389
- [43]Bai J, Wu Y. SAE-RNN Deep Learning for RGB-DBased Object Recognition, IntelligentComputing Theory, Springer International Publishing, 2014, pp.235-240.
- [44] Chen F.Q, Wu Y, Zhao G.D, Zhang J.M,Zhu M, Bai J. Contractive De-noising Auto-Encoder, Intelligent ComputingTheory, Springer International Publishing, 2014, pp.776-781
- [45] Ming Zhu, Yan Wu. ANovel Deep Model for Image Recognition. 5th IEEE InternationalConference on Software Engineering and Service Sciences, 2014, pp.373-376
- [46] Yuanfang Ren, Yan Wu, ConvolutionalDeep Belief Networks for Feature Extraction of EEG Signal, 2014 InternationalJoint Conference on Neural Network(IJCNN) , 2014, pp.2850-2853
- [47] Rui Zhao, Zhihua Wei, Yan Wu, Cairong Zhao,Duoqian Miao, Bayes Network based CollaboratingControl Algorithm in Active Multi-Camera Network with Applications to ObjectTracking, Mathematical Problems in Engineering, 2014, DOI: http://dx.doi.org/10.1155/2014/219367
- [48] Chen Fuqiang, Wu Yan,Bu Yude, Zhao Guodong Spectral Classification Using Restricted BoltzmannMachine, Publications of the Astronomical Society of Australia, 2014, DOI:http://dx.doi.org/10.1017/pasa.2013.38
- [49] Yuanfang Ren, YanWu,Yanbin Ge, A Co-training Algorithm for EEG Classificationwith Biomimetic Pattern Recognition and Sparse Representation, Neurocomputing,2014, 137: 212-222
- [50] Guodong Zhao, Yan Wu,Yuanfang Ren, Ming Zhu, EAMCD: An Efficient Algorithm based on Minimum CouplingDistance for community identification in complex networks, The European Physical Journal B, 2013,36(1): 14 DOI:10.1140/epjb/e2012-30697-5
- [51] Yuanfang Ren, YanWu, Anefficient algorithm for high-dimensional function optimization, Soft Computing,2013, 17(6): 995-1004
- [52] Yan Wu, Yanbin Ge, A Novel Method for Motor Imagery EEG AdaptiveClassification Based Biomimetic Pattern Recognition, Neurocomputing, 2013,116:280-290
- [53] Rui Zhao, Zhihua Wei, DuoqianMiao, Yan Wu, Lin Mei, Semi-supervised Vehicle Recognition: An ApproximateRegion Constrained Approach, Rough Setsand Knowledge Technology, Lecture Notes in Computer Science,Volume7414, 2012, pp. 161-166
- [54]Yanbin Ge, Yan Wu, A NewHybrid Method with Biomimetic Pattern Recognition and Sparse Representation forEEG, CCIS 304,P212-217, ICIC 2012
- [55]Rui Zhao, YanWu, Junbo Zhu, Zhihua Wei, Efficient Vehicle Identification UsingMPEG-7 Color Layout Descriptor,2011 IEEE International conference onSupernetworks and System Management, 2011. pp.128-131
- [56] 武妍,徐凯,基于增量半监督仿生模式识别的运动想象脑电识别,中国生物医学工程学报,2011,30(6):878-884
- [57] Yanbin Ge, Yan Wu, Towards Adaptive Classification of MotorImagery EEG Using Biomimetic Pattern Recognition, LNCS 6819, ICIC 2011, pp.455-460
- [58] Yan Wu, Hui Geng,Xiao-Yue Bian, A new method of signature verification based on biomimeticpattern recognition theory, The 2nd International Conference onBiomedical Engineering and Computer Science, Wuhan, China, 2011, pp.357-360
- [59] Yan Wu, Bing Xu, Xiao-Yue Bian, An improved PCNNmodel and a new removing algorithm of salt and pepper noise, 2010 Secondinternational conference on computational intelligence and natural computing,Wuhan, China, 2010, pp.178-182
- [60] Xu Kai, Wu Yan,Motor Imagery EEG Recognition Based OnBiomimetic Pattern Recognition,20103rd International Conference on Biomedical Engineering andInformatics(BMEI'10),Yantai,China, 2010,pp. 955-959
- [61] 王改良,武妍,用入侵的自适应遗传算法训练人工神经网络,红外与毫米波学报,2010,29(2):136-139
发明专利:
1、武妍、莫宇剑、刘飞麟,一种自动驾驶路面摩擦系数预测方法、电子设备及介质,ZL202110718997.4 (授权)
2、 武妍、户英豪,面向自动驾驶的融合高精地图的 3D 目标检测方法及介质,202311119183.4 (公开)
3、 武妍、莫宇剑,一种基于虚拟点云增强的 3D 目标检测方法,202310967469.1 (公开)
4、 武妍、张煜玮,基于 YOLO 双阶段策略的交通信号灯检测方法及系统,202311272411.1 (公开)
同济大学是国家教育部直属重点大学,也是首批被批准成立研究生院、并被列为国家“ 211 工程”和“面向 21 世纪教育振兴行动计划”(985 工程)与上海市重点建设的高水平研究型大学之一。同济大学创建于 1907 年,现已成为拥有理、工、医、文、法、经(济)、管(理)、哲、教(育)9 大门类的研究型、综合性、多功能的现代大学。
同济大学现设有各类专业学院 22 个,还建有继续教育学院、 职业技术教育学院等,设有经中德政府批准合作培养硕士研究生的中德学院、中德工程学院,与法国巴黎高科大学集团合作举办的中法工程和管理学院等。目前学校共有 81 个本科专业、 140 个硕士点、 7 个硕士专业学位授权点、博士授权点 58 个、 13 个博士后流动站,学校拥有国家级重点学校 10 个。各类学生 5 万多人,教学科研人员 4200 多人,其中有中科院院士 6 人、工程院院士 7 人,具有各类高级职称者 1900 多人,拥有长江学者特聘教授岗位 22 个。作为国家重要的科研中心之一,学校设有国家、省部级重点实验室和工程研究中心等国家科研基地 16 个。学校还设有附属医院和 2 所附属学校。
近年来同济大学正在探索并逐步形成有自己特色的现代教育思想和办学理念。以本科教育为立校之本,以研究生教育为强校之路。确立“知识、能力、人格”三位一体的全面素质教育和复合型人才培养模式。坚持“人才培养、科学研究、社会服务、国际交往”四大办学功能协调发展,努力强化服务社会的功能,实现大学功能中心化。以国家科技发展战略和地区经济重点需求为指针,促进传统学科高新化、新兴学科强势化、学科交叉集约化。与产业链紧密结合,形成优势学科和相对弱势学科互融共进的学科链和学科群,构建综合性大学的学科体系,其中桥梁工程、海洋地质、城市规划、结构工程、道路交通、车辆工程、环境工程等学科在全国居领先地位。在为国家经济建设和社会发展做贡献的过程中,争取更多的“单项冠军”,提升学校的学术地位和社会声誉。学校正努力建设文理交融、医工结合、科技教育与人文教育协调发展的综合性、研究型、国际知名高水平大学。
同济大学已建成的校园占地面积 3700 多亩,分五个校区,四平路校区位于上海市四平路,沪西校区位于上海市真南路,沪北校区位于上海市共和新路,沪东校区位于上海市武东路。正在建设中的嘉定校区位于安亭上海国际汽车城内。
同济大学研究生院简介
同济大学一贯重视研究生教育,早在 20 世纪 50 年代初即在部分专业招收培养研究生。 1978 年学校恢复招收硕士研究生, 1981 年起招收博士研究生,同年被国务院学位委员会批准为首批有权授予博士、硕士学位的单位。 1986 年经国务院批准试办研究生院, 1996 年经评估正式成立研究生院,成为我国培养高层次专门人才的重要基地之一。同济大学现有一级学科博士学位授权点 12 个,二级学科博士学位授权点 68 个(含自主设置 10 个二级学科博士点),硕士学位授权点 147 个(含自主设置 7 个二级学科硕士点),分属哲学、经济学、法学、教育学、文学、理学、工学、医学、管理学等 9 个学科门类。其中土木工程、建筑学、交通运输工程、海洋科学、环境科学与工程、力学、材料科学与工程等学科处在全国优势和领先地位,机电、管理、理学等学科近年有了长足进展。我校还设有 13 个博士后科研流动站。近些年来,为了适应我国经济建设和社会发展的需要,学校还十分注重培养不同类型、多个层次、多种规格的高层次专门人才。学校既设科学学位,又设工商管理、行政管理、建筑学、临床医学、工程硕士(含 21 个工程领域)、口腔医学等多种专业学位;既培养学术型、研究型研究生,又培养应用型、复合型专业学位研究生;既有在校全日制攻读学位模式,又有在职人员攻读专业硕士学位或以同等学力申请硕士学位、中职教师在职攻读硕士学位、高校教师在职攻读硕士学位模式。此外,还面向社会举办多种专业研究生课程进修班等,充分发挥了我校学科优势和特色,由此形成了多渠道、多规格、多层次的办学模式,取得了良好的社会效益。
同济大学研究生院是校长领导下具有相对独立职能的研究生教学和行政管理机构,下设招生办公室、管理处、培养处、学位办公室、学科建设办公室和行政办公室。同时,学校党委还专门设立了研究生工作部。学校设有校学位评定委员会,各学院有学位评定分委员会,并设立了各学科、专业委员会,配有学位管理工作秘书、教务员、班主任、研究生教学秘书等教辅人员。研究生院曾多次被评为全国和上海市学位与研究生教育管理工作先进集体。
二十多年来,同济大学始终把全面提高培养质量作为研究生教育改革的指导思想,在严格质量管理方面采取了一系列切实有效的措施,取得了较好效果。在连续多年全国百篇优秀博士学位论文评选中,有 7 篇入选。同济大学为国家培养了一大批高素质的高级专门人才,至今已授予博士学位 1311 人,硕士学位近 9504 人,其中有相当一部分已成为我国社会主义现代化建设的重要骨干力量。至 2004 年 9 月,在校博士、硕士研究生约达 11000 多人,专业学位硕士生约 2700 人。根据本校研究生教育发展规划, 2006 年计划招收博士生、硕士生(含专业学位研究生)超过 4000 名。同济大学正在为我国经济建设和社会发展输送高层次人才做出更大的贡献。
收费和奖励
1) 按照国务院常务会议精神,从 2014 年秋季学期起,向所有纳入国家招生计划的新入学研究生收取学费。其中:工程管理硕士(125600)、MBA[微博](125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程领域工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)专业学位研究生的学费标准另行公布,其它硕士研究生学费不超过 8000 元/学年。
2) 对非定向就业学术型研究生和非定向就业专业学位硕士研究生,同济大学有完善的奖励体系(工程管理硕士(125600)、MBA(125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)的奖励由培养单位另行制订)。对亍纳入奖励体系的非定向就业学术型硕士生和非定向就业专业学位硕士生在入学时全部都可以获得 8000 元/学年的全额学业奖学金,该奖学金用以抵充学费。对纳入奖励体系的硕士研究生还可获得不少亍 600 元/月的励学金,每年发放10 个月。另外,纳入奖励体系的非定向就业研究生都可以申请励教和励管的岗位,获得额外的资励。所有非定向就业硕士研究生在学期间纳入上海市城镇居民基本医疗保险,可申请办理国家励学贷款,可参加有关专项奖学金评定。
3)工商管理硕士在职班、金融硕士在职班、公共管理硕士、工程管理硕士、会计硕士、护理硕士、教育硕士、汉语国际教育硕士、人文学院的艺术硕士采取在职学习方式,考生录取后,人事关系不人事档案不转入学校,在读期间不参加上海市大学生医疗保障,学校不安排住宿,毕业时不纳入就业计划。