个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
赵峦啸,同济大学教授、博导,地球物理系主任, 教育部青年长江学者。主要从事岩石物理、地质力学、人工智能地球物理勘探等相关方向的研究工作,在Earth-Science Reviews、JGR-solid earth、Geophysics等期刊发表SCI论文80余篇,其中第一作者和通讯作者共49篇(含20篇Geophysics), 获授权发明专利17项。主持了4项自然基金(含1项联合基金重点)、2项国家重点研发计划课题和专题、中科院先导A任务、2项道达尔(法国)研发中心资助的国际合作项目以及中石油、中石化、中海油等企业合作项目30余项。任中国地球物理学会岩石物理专业委员会副秘书长、地球物理国际SCI期刊Geophysical Prospecting和Journal of Geophysics and Engineering的副主编。获刘光鼎地球物理青年科学技术奖、傅承义青年科技奖、上海市科技启明星、和上海市科技进步二等奖等。
1. 国家自然科学基金联合基金重点项目,强非均质性地层的各向异性动静态力学参数响应机理与地质力学评价方法,U23B20157,主持,2024/1-2027/12
2. 国家自然科学基金面上项目,基于水力压裂能量分析的页岩储层可压裂性评价:物理机理和模型表征,42174134),主持,2022/1-2025/12
3. 国家自然科学基金面上项目,不同成熟度陆相有机质泥页岩地震岩石物理响应机理,41874124,主持,2019/1-2022/12
4.国家重点研发计划课题,基于南海大洋钻探岩石物理分析的弹性波地震数据定量解释研究,主持,2018/8-2022/08
5. 国家重点研发计划子课题,CO2驱油与封存多尺度岩石物理特性与三维地震响应特征研究,主持,2023/12-2028/12
6. 国际合作科研项目(法国道达尔勘探和生产研发中心资助),Machine LearningBased Carbonate Reservoir Properties Prediction(基于机器学习的碳酸盐岩储层参数预测, 主持, 2018/10-2020/6.
7. 国际合作科研项目(法国道达尔勘探和生产研发中心资助),Petrophysical andGeophysical characterization of pore types in carbonates, 主持,2017/3-2018/6
8. 中科院战略先导科技专项,深储层岩石物理响应机理,任务负责人,2017/1-2022/8
9. 国家自然科学青年基金,地震波在非均质多孔介质分界面上的反射特征及其对储层刻画的启示, 41504087,主持,2016/1-2018/12
10. 企业委托科研项目,基于叠前三维地震正演和机器学习的礁滩相储层非均质性分布预测,主持,2021/6-2022/6,
11. 企业委托科研项目,基于深度学习的岩性预测和储层刻画,主持,2019/10-2020/10,
12. 企业委托科研项目,机器学习框架下中深层碳酸盐岩储层地震刻画新方法,主持,2019/09-2020/05,
13. 企业委托科研项目,非常规页岩油气储层参数的智能预测,2018/03-2019/10
14. 企业委托科研项目, 深层碳酸盐岩岩溶储层的弹性和衰减特征的数字岩石物理表征技术,主持,2022/12-2023/12
15. 企业委托科研项目, 渤海咸水层CO2封存岩石物理机理实验, 主持,2022/11-2023/12
16. 企业委托科研项目,非均质体波致流体频散与衰减模型研究,主持,2022/4-2023/12
17. 企业委托科研项目,页岩油数字岩心建模及地震甜点预测技术,主持,2023/3-2023/12
18. 企业委托科研项目,裂缝性多孔介质岩石物理建模和非常规储层可压裂性评价研究,主持,2017/4-2018/12
19. 企业委托科研项目,不同成熟度有机质页岩储层地震岩石物理研究,主持,2015/10-2016/12
[88] Xu, M., L. Zhao*, J.Liu, and J. Geng, 2024, Enhancingseismic porosity estimation through 3D sequence-to-sequence deep learning withdata augmentation, spatial and geologic constraints, Geophysics, 89 (4), M93-M108
[87] Zhao,L., J. Liu, M. Xu*, Z. Zhu, Y. Chen, and J. Geng, 2024, Rock Physics guided machinelearning for shear sonic log prediction, Geophysics,89(1), D75-D87
[86] Yan, D., L. Zhao*, X. Song, J. Tang, and F. Zhang, 2024, Fracability evaluationmodel for unconventional reservoirs: From the perspective of hydraulicfracturing performance, International Journal of Rock Mechanics and MiningSciences,183, 105912
[85] Zhao, L., X. Zhu, X.Zhao, C. You, M. Xu, T. Wang*, and J. Geng, 2024, Deep carbonate reservoircharacterization using multi seismic attributes:A comparison ofunsupervised machine learning approaches,Geophysics, 89 (2), B65-B82
[84] Zhao, L., Y. Zhao, D. Yan, J. Zhu, and J. Cai*, Integratedrock physics characterization of unconventional shale reservoir: Amultidisciplinary perspective, Advances in Geo-Energy Research, 14 (2),86-89
[83] Yang, Z., H. Cao, L.Zhao, X. Yan, Y. Wang, and W. Zhu*, The Effects of Pore Structure on theWave Dispersion and Attenuation Due to Squirt Flow: Dynamic Stress-StrainSimulation on a Simple Digital Pore-Crack Mode, Geophysics, 89 (3), MR155-MR166
[82] Chen, M*., J. Geng, and L. Zhao, A hybrid numerical model for coupled hydro-mechanicalanalysis during CO2 injection into heterogeneous unconventional reservoirs, Gas Science and Engineering, 205244
[81] Long, T., X. Qin,Q. Wei, L. Zhao*, Y. Wang, F. Chen,M. Myers, Y. Zheng, and D. Han, Quantifying the influences of clay-bound wateron wave dispersion and attenuation signatures of shale: An experimental study, Geophysics, 89 (2), MR77-MR90
[80] Liu, W., L. Zhao*,X. Qiu, Y. Wang, Y. Wang, and W. Zhu, 2024, Use digital rock physics tocharacterize velocity and attenuation signatures of deep cavity-fracture carbonatereservoir, Journal of Geophysics and Engineering, gxae086
[79] Cao, S., F. Zhang*, M. An*, D. Elsworth, M. He, H. Liu, andL. Zhao, Gouge stability controlledby temperature elevation and obsidian addition in basaltic faults andimplications for moonquakes, InternationalJournal of Mining Science and Technology, doi.org/10.1016/j.ijmst.2024.04.012
[78] Hussein, A., L. Zhao*,A. Masgari and H. Handoyo, Shear strength characteristics of marine sediments:the influences of lithofacies and sedimentological environment, Marine Geophysical Research, 2024,45:14
[77] Cai, Z., L. Zhao*,T. Long, J. Ma, Y. Wang, Y. Lei, J. Zhou, D. Han, and J. Geng, Elastic andanisotropic properties of organic-rich lacustrine shales: An experimental study,Geophysical Prospecting, 2024, 72(8), 2958-2977
2023
[76] Zhao, L*., J. Zhu, X. Qin, R. Gong, Z. Cai, F. Zhang, D. Han, and J. Geng, Jointgeochemisty-rock physics modeling: Quantifying the effects of thermal maturityon the elastic and anisotropic properties of organic shale, Earth-Science Reviews, 247,104627
[75] Yan, D., L.Zhao*, Y. Wang, Y. Zhang, Z. Cai, X. Song, F. Zhang, and J. Geng, 2023, HeterogeneityIndexes of unconventional reservoir shales: quantitatively characterizingmechanical properties and failure behaviors, International Journal of Rock Mechanics and Mining Sciences, 171,105577
[74] Wang. J*, B. Ma, L. Zhao,P. Su*, and S. Wu, 2023, Rock physicsdiagnostics to characterize early diagenetic processes in hemipelagiccalcareous ooze in the northern South China Sea margin, Marine Geophysical Research, 44, 20
[73] Liu, J., L.Zhao*, M. Xu, X. Zhao, Y. You, J. Geng, 2023, Porosity prediction fromprestack seismic data via deep learning: Incorporating low-frequency porositymodel, Journal of Geophysics andEngineering, 20, 1016–1029
[72] 耿建华*,赵峦啸, 麻纪强, 朱津琬, 姚秋粮, 高志前, 何治亮,2023,超深碳酸盐岩油气储层岩石弹性性质高温高压超声实验研究,地球物理学报, 66(9), 3959-3974
[71] Qin, X., L. Zhao*, J. Zhu,and D. Han, 2023, Modeling the elastic characteristics of overpressure due tothermal maturation in organic shales, Advancesin Geo-Energy Research 10 (3), 174-188
[70] Wang, Y., L. Zhao*, Z.Yang, H. Cao, and J. Geng, 2023, Rock Physics Modeling ElasticProperties of Multiscale Fractured Rocks, Geophysics, 88 (6), MR289–MR304.
[69] Gao, S., M. Xu, L. Zhao*, Y.Chen, J. Geng, 2023, Seismic predictions of fluids via supervised deeplearning: Incorporating various class-rebalance strategies, Geophysics, 88 (4), M185-M200
[68] Zhao, L., Z. Cai, X. Qin*,Y. Wang, L. Teng, D. Han, F. Zhang, and J. Geng, 2023, An Empirical ElasticAnisotropy Prediction Model in Self-sourced Reservoir Shales and ItsInfluencing Factors Analysis, Geophysics,88 (3), MR117-MR126
[67] Zhu, W., L.Zhao*, Z. Yang, H. Cao, Y. Wang, W. Chen, R. Chen, 2023, Stress RelaxingSimulation on Digital Rock: Characterize Attenuation due to Wave-induced Fluidflow and Scattering, Journal ofGeophysical Research: Solid Earth, e2022JB024850
[66] Li, H, Q. Huang, L. Zhao*,Y. Wang, Z. Cai, J. Gao, and D. Han, 2023, The seismic dispersion andattenuation characteristics of organic shales, Geophysical Journal International, 232 (3), 1785-1802.
[65] Sun, S., J. Nie, B. Wang, L. Zhao,Z. He, H. Zhang, D. Chen, J. Geng*, 2023, Generating complete syntheticdatasets for high‐resolution amplitude‐versus‐offset attributes deep learninginversion, Geophysical Prospecting, 71(6), 891-913
[64] Hussein, A., L. Zhao*, Y.Chen, and J. Wang, 2023, Rock Physicscharacteristics of marine sediments in the South China Sea: link between thegeological factors and elastic properties, Frontiersin Earth Science, 10, 931611
[63] Zou, C., L.Zhao*, F. Hong, Y. Chen, Y. Wang, and J. Geng, 2023, A comparison ofmachine-learning methods to predict porosity in carbonate reservoirs fromseismic-derived elastic properties, Geophysics, 88 (2), B101-B120
[62] 何治亮*, 赵向原, 张文彪, 吕心瑞, 朱东亚, 赵峦啸, 胡松, 郑文波, 刘彦锋, 丁茜, 段太忠, 胡向阳, 孙建芳, 耿建华, 深层-超深层碳酸盐岩储层精细地质建模技术进展与攻关方向, 石油与天然气地质, 2023, 44(1): 16-33 doi:10.11743/ogg20230102
[61] Sun, S., L. Zhao, H. Chen,Z. He, and J. Geng*, 2023, Pre-stack seismic inversion for elastic parametersusing model-data-driven generative adversarial networks, Geophysics, 88 (2), M87-M103
[60] 赵峦啸,麻纪强,李珂瑊,朱津琬,高志前、何治亮、耿建华*,2023,超深层碳酸盐岩储层地震岩石物理特征和模型表征,地球物理学报,66(1),16-33
2022
[59] Qin, X, L. Zhao*, Z. Cai, Y. Wang, M. Xu, F. Zhang, D. Han, J. Geng, 2022, Compressionaland shear wave velocities relationship in anisotropic organic shales, Journal of Petroleum Science andEngineering, 111070
[58] Ba,J., H. Zhu, L.Y. Fu*, and L. Zhao, 2022, Challenges in seismic rock physics, Journal of Geophysics and Engineering, 19(6), 1367-1369
[57] Wu, S., B. Wang, L. Zhao, H. Liu, and J. Geng*, 2022, High‐efficiency and High‐precision Seismic Trace Interpolation forIrregularly Spatial Sampled Data by Combining an Extreme Gradient BoostingDecision Tree and Principal Component Analysis, Geophysical Prospecting, doi.org/10.1111/1365-2478.13270
[56] Qin, X*, D. Han, and L. Zhao, 2022, Measurementof Grain Bulk Modulus on Sandstone Samples from the Norwegian ContinentalShelf, Journal of Geophysical Research:Solid Earth, e2022JB024550
[55] Wang, Y., L. Zhao*, C. Cao, Q. Yao, Z. Yang, H. Cao, and J. Geng, 2022,Wave-induced fluid pressure diffusion and anelasticity in partially saturatedrocks: the influences of boundary conditions, Geophysics, 87(5), MR247-MR263
[54] Xu,M.. L. Zhao*, S. Gao, X. Zhu, and J.Geng, 2022, Joint use of multi-seismic information for lithofacies predictionvia supervised convolutional neural networks, Geophysics, 87(5), M151-M162
[53] Wang, Y., L. Zhao*, D. Han, Q. Wei, Y. Zhang, H. Yuan, and J. Geng, 2022,Experimental Quantification of the Evolutionof the Static Mechanical Properties of Tight Sedimentary Rocks duringIncreasing-amplitude Load and Unload Cycling, Geophysics, 87(2), MR73-MR83
[52] Cai, J*., L. Zhao, F. Zhang, and W. Wei, 2022, Advances in multiscale rockphysics for unconventional reservoirs, Advancesin Geo-Energy Research, 6 (4), 271-275
[51] Guo, J., L.Zhao, X. Chen*, Z. Yang, H. Li, C. Liu, 2022, Theoretical modelling of seismicdispersion, attenuation, and frequency-dependent anisotropy in a fluidsaturated porous rock with intersecting fractures, Geophysical Journal International, 230, 580-606
[50]An, M., F. Zhang*, K. Min, D. Elsworth, C. He, and L. Zhao, 2022,Frictional Stability of Metamorphic Epidotein Granitoid Faults Under Hydrothermal Conditions and Implications forInjection-Induced Seismicity,JGR-solidearth, 127(3),e2021JB023136
[49]Zhang, Y., J. Ma, Y. Wang*, F. Wang, X. Li, and L. Zhao, 2022, Quantificationof the Fracture Complexity of Shale Cores After Triaxial Fracturing, Frontiers in Earth Science, 10:863773.doi:10.3389/feart.2022.863773
[48]Wang, Y., L. Niu, L.Zhao, B. Wang, Z. He, H. Zhang, D. Chen, and J. Geng*, 2022, GaussianMixture Model Deep Neural Network and Its Application in Porosity Prediction ofDeep Carbonate Reservoir, Geophysics, 87(2), M59-M72, doi.org/10.1190/geo2020-0740.1
[47]Wang, Y*, D. Han, L. Zhao, H. Li, T.Long, J. Hamutoko, 2022, Static and Dynamic Bulk Moduliof Deepwater Reservoir Sands: Influence of Pressure and Fluid Saturation, Lithosphere, 4266697,doi.org/10.2113/2022/4266697
[46]Li, S., K. Zhou, L. Zhao, Q. Xu, andJ. Liu*, 2022, An improved lithology identification approach based onrepresentation enhancement by logging feature decomposition, selection andtransformation, Journal of PetroleumScience and Engineering, 109842
2021
[45] Zou, C., L. Zhao*, M. Xu, Y. Chen, and J. Geng,2021, Porosity Prediction with Uncertainty Quantification from Multiple SeismicAttributes Using Random Forest, Journalof Geophysical Research: Solid Earth, 126(7),e2021JB021826
[44]Chen, Y., L. Zhao*, J. Pan, C. Li,M. Xu, K. Li, F. Zhang, and J. Geng, 2021, Deep carbonatereservoir characterization using multi-seismic attributes via machine learningwith physical constraints, Journal ofGeophysics and Engineering, 18(5), 761-775
[43]Nie, J., Z. Qu, Y. Cheng*, X. Wang, J. Zhu, S. Sun, L. Zhao, and J Geng*, 2021, Diagnosing of clay distribution inargillaceous sandstone by a rock physics template, Geophysical Prospecting, 69 (8-9), 1700-1715
[42]Zhao, L*., C.Zou, Y. Chen, W. Shen, Y. Wang, H. Chen, and J. Geng, 2021, Fluids and lithofacies prediction basedon integration of well-log data and seismic inversion: a machine learningapproach, Geophysics, 86(4),M151–M165
[41]Ren, J., Y. Wang*, D. Han, L. Zhao,T. Long, and S. Tang, 2021, Determining crack initiation stress inunconventional shales based on strain energy evolution, Journal of Geophysics and Engineering, 18(5), 642-652.
[40]Yuan, H*., Y. Wang, D. Han, H. Li, andL. Zhao, 2021, Velocity measurement of North Sea heavy oil sands underchanging pressure and temperature, Journal of Petroleum Science and Engineering,205, 108825.
[39]Guo, J., L. Zhao*, Z. Yang, and H.Li, 2021, Analytical model for rock effective elastic properties with alignedelliptical cracks embedded in transversely‐isotropic background, Geophysical Prospecting, 69,1515-1530
[38] An, M., F. Zhang*, E. Donstov, D.Elsworth, H. Zhu, and L. Zhao, 2021,Stress Perturbation Caused by Multistage Hydraulic Fracturing: Implications forDeep Fault Reactivation, International Journal of Rock Mechanics and MiningSciences, 141, 104704
[37] 朱伟,赵峦啸*,王一戎,2021,数字岩心宽频带动态应力应变模拟方法及其对含裂隙致密岩石频散和衰减特征的表征, 地球物理学报,64(6),2086-2096
[36] Zhao, L*.,Y. Wang, Q. Yao, J. Geng, H. Li, H. Yuan, and D. Han, 2021, Extended GassmannEquation with Dynamic Volumetric Strain: Modeling Wave Dispersion and Attenuationof Heterogenous Porous Rocks, Geophysics,86(3), MR149-MR164
[35]Teillet, T., F. Fournier, L. Zhao*, J. Borgomano, F. Hong, 2021, Geophysical pore typeinversion in carbonate reservoir: integration of cores, well-logs, and seismicdata (Yadana field, offshore Myanmar), Geophysics,86(3), B149-B164.
[34]Wang, Y., L. Zhao*, D. Han, A.Mitra, H. Li, ans S. Aldin, 2021, Anisotropic Dynamic and Static MechanicalProperties of Organic-rich Shale: The Influence of Stress, Geophysics,
86(2),C51-C63
[33] 赵峦啸, 刘金水,姚云霞,钟锴,麻纪强,邹采枫,陈远远,付晓伟,朱晓军,朱伟林,耿建华*,2021, 基于随机森林算法的陆相沉积烃源岩定量地震刻画:以东海盆地长江坳陷为例, 地球物理学报,64(2),700-715
[32] Niu, L., J. Geng*, X. Wu, L. Zhao, and H. Zhang, 2021, Data-drivenmethod for an improved linearised AVO inversion, Journal of Geophysics andEngineering, 18, 1-22
2020
[31] Li,H., L. Zhao*, D. Han, J. Gao, H.Yuan, and Y. Wang, 2020,Experimental study on frequency-dependent elasticproperties of weakly consolidated marine sandstone: effects of partialsaturation, Geophysical Prospecting,68 (9), 2808-2824.
[30] 钟广法*,张迪,赵峦啸,大洋钻探天然气水合物储层测井评价研究进展,2020,天然气工业,40(8),25-44
[29]Li, H*., D. Han, Q. Huang, L. Zhao,Q. Yao, and J. Gao, 2020, Precision analysis of dynamic force-deformationmeasurement: numerical modeling and experimental data, Journal of Geophysicsand Engineering, 17(6), 980-992
[28]Wang, Y., L. Zhao*, D. Han, X. Qin,J. Ren, and Q. Wei, 2020, Micro-mechanical Analysis of the Effects of StressCycles on the Dynamic and Static Mechanical Properties of Sandstone, International Journal of Rock Mechanics andMining Sciences, 134,104431
[27] Yang, J., J. Geng*, and L. Zhao, 2020, A frequency-decomposednonstationary convolutional model for amplitude-versus-angle-frequency forwardwaveform modeling in attenuative media, Geophysics,85(6),T301-T314.
[26] Yuan, H., D. Han,H. Li, L. Zhao*, and W. Zhang, 2020,The effect of rock frame on elastic properties of bitumen sands, Journal of Petroleum Science andEngineering, 194, 107460
[25]Li, H., D. Wang, J. Gao, M. Zhang, Y. Wang, L.Zhao*, Z. Yang, 2020, Role of saturation on elastic dispersion andattenuation of tight rocks: An experimental study. Journal of GeophysicalResearch: Solid Earth, 125(4),e2019JB018513.
[24] Zhao, L*., C. Cao, Q. Yao, Y. Wang, H.Li, H. Yuan, J. Geng, and D. Han, 2020, Gassmann Consistency for DifferentInclusion-based Effective Medium Theories: Implications for Elastic interactionsand Poroelasticity, Journal of Geophysical Research: Solid Earth, 125(3), e2019JB018328.
[23] Wang, Y., H. Li*,D. Han, L. Zhao, J. Ren, and Y.Zhang, 2020, A comparative study of the stress-dependence of dynamic and staticmoduli for sandstones, Geophysics, 85(4), MR179-MR190.
[22] 朱伟,赵峦啸*,王晨晨,单蕊,2020,基于数字岩心动态应力应变模拟的非均匀孔隙介质波致流固相对运动刻画,地球物理学报,63(6),2386-2399
[21] Zhou, K., J.Zhang, Y. Ren, Z. Huang, and L. Zhao*, 2020, A gradient boostingdecision tree algorithm combining synthetic minority over-sampling techniquefor lithology identification, Geophysics, 85(4), WA147-WA158
[20] 陈树民*, 韩德华, 赵海波, 陈丰, 王团, 唐晓花, 赵峦啸, 秦玄, 2020,松辽盆地古龙页岩油地震岩石物理特征及甜点预测技术, 大庆石油地质与开发,39(3),107-116
[19] Zhao, L.*, Y. Wang,X. Liu, J. Zhang, Y. Liu, X. Qin, K. Li, and J. Geng, 2020, Depositional impacton the seismic elastic characteristics of the organic shale reservoir: A casestudy of Longmaxi-Wufeng shale in Fuling gas field, Sichuan Basin, Geophysics,85(2), B23-B33.
2019
[18] Yuan,H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2019, Attenuation analysisof heavy oil sands –based onlab measurements, Geophysics, 84(5), B299-B309
[17] Wang, J*., S. Wu, L. Zhao, W.Wang, J. Wei, and J. Sun, 2019, Aneffective method for shear-wave velocity prediction in sandstones, MarineGeophysical Research, 40 (4), 655-664
[16] Qin, X*., D. Han, and L.Zhao, 2019, Elastic characteristics of overpressure due tosmectite-to-illite transition based on micro-mechanism analysis, Geophysics,84(4), WA23-WA42.
2018
[15] Zhao, L*., X. Qin, J.Zhang, X. Liu, D. Han, J. Geng, and Y. Xiong, 2018, An effective reservoirparameter for seismic characterization of organic shale reservoir, Surveysin Geophysics, 2018, 39(3), 509-541
[14] Yuan,H*., D. Han, L. Zhao, Q. Huang, and W. Zhang, 2018, Rock physicscharacterization of bitumen carbonates: a case study, Geophysics, 83(3),B119-B132.
2017
[13] Zhao,L*., H. Yuan, J. Yang, D. Han, J. Geng, R. Zhou,H. Li, and Q. Yao, 2017, Mobility Effect on Poroelastic Seismic Signatures inPartially Saturated Rocks with Applications in Time-lapse Monitoring of a HeavyOil Reservoir, Journal of GeophysicalResearch-Solid Earth, 122 (11), 8872-8891
[12]Zhao, L*.,Q. Yao, D. Han, R. Zhou, J. Geng, and H. Li, 2017, Frequency- and angle-dependent poroelastic seismic analysis for highly attenuating reservoirs, Geophysical Prospecting, 65(6),1630-1648.
[11] Zhu W*., L. Zhao, R. Shan, Modeling effectiveelastic properties of digital rocks using a new dynamic stress-strainsimulation method, 2017, Geophysics, 82(6), MR163-MR174.
2016
[10] Zhao, L*.,X. Qin, D. Han, J. Geng, Z. Yang, H. Cao, Rock-Physics modeling for the elasticproperties of organic shale at different maturity stages, 2016, Geophysics, 81(5), D527-D541.
[9] Zhao, L*., Q.Yao, D. Han, F. Yan, and M. Nasser, 2016,Characterizing the effect of elastic interactions on the effective elasticproperties of porous, cracked rocks, GeophysicalProspecting, 64(1), 157-169.
[8]Li, H*., L. Zhao, D. Han, M. Sun, and Yu Zhang, 2016, Elastic properties of heavy oil sands: effects oftemperature, pressure, and microstructure, Geophysics,81(4), D453-464. SCI
[7] Li, H*., D. Han, H.Yuan, X. Qin, and L. Zhao, 2016,Porosity of heavy oil sand: laboratory measurement and bound analysis, Geophysics, 81(2), D83-D90.
2015
[6] Zhao, L*., D.Han, Q. Yao, R. Zhou and F. Yan, 2015, Seismic reflection dispersion due towave-induced fluid flow in heterogeneous reservoir rocks, Geophysics, 80(3), D221-D235.
[5] Yao, Q*., D. Han, F.Yan, and L. Zhao, 2015, Modelingattenuation and dispersion in porous heterogeneous rocks with dynamic fluidmodulus, Geophysics, 80(3),D183-D194.
2014
[4] Zhao, L*., J.Geng, J. Cheng, D. Han, and T. Guo, 2014,Probabilistic lithofacies prediction from prestack seismic data in aheterogeneous carbonate reservoir, Geophysics,79(5), M25-M34.
[3] Yan, F*., Han, D, Q.Yao, and L. Zhao, 2014, Predictionof seismic wave dispersion and attenuation from ultrasonic velocitymeasurements, Geophysics, 79(5),WB1-WB8.
2013
[2] Zhao, L*.,M. Nasser, and D. Han, 2013, Quantitative geophysical pore typecharacterization and geological implications in carbonate reservoir, Geophysical Prospecting, 61(4), 827-841.
[1] Zhao, L*, J.Geng, S. Zhang, and D. Yang, 2008, 1-DControlled source electromagnetic forward modeling for marine gas hydratesstudies: Applied Geophysics, 5(2),121-126.
文件上传中...