个人信息
Personal Information
联系方式
Contact Information
个人简介
Personal Profile
郑越博士是桥梁系的副教授,博士生导师。在攻读博士前在同济大学建筑设计研究院从事了六年的桥梁设计工作,2015年从香港理工大学博士毕业后加入同济大学桥梁系,2016年获得上海市浦江人才计划,2017年获得国家留学基金委青年骨干教师公派访学资助,2018年4月至2019年4月在美国加州大学伯克利分校访问。2024年获得中国交通运输协会科技进步一等奖以及上海市土木工程学会二等奖等奖项。拥有10余项国家专利,其中具有知识产权的多种产品已经较大规模的应用于实际工程。目前专注于人工智能与桥梁工程交叉学科的研究,已经在土木工程的国际一流期刊发表近40篇SCI论文。
我们的研究团队成员分别来自于同济大学桥联系、建筑工程系以及防灾系。主要研究方向为桥梁与建筑工程的减隔震、人机交互的桥梁与建筑结构智能检测、监测与运维。目前研发的形状记忆合金拉索支座、阻尼板耗能限位支座、力学超构材料的结构已经实现了规模化的应用。团队与美国加州大学伯克利分校、香港理工大学、新西兰坎特伯雷大学等学者保持紧密的学术交流,欢迎大家报考硕士、博士研究生。也欢迎随时进展开展博士后的合作研究。
主要承担了国家自然科学基金、上海市浦江人才计划、各省科技厅与交通厅的科研课题以及各企业委托的横向科研课题。
上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg上传附件
支持扩展名:.rar .zip .doc .docx .pdf .jpg .png .jpeg1. 青海科技厅科技援青项目,高寒高烈度地震区现役桥梁结构的抗震韧性提升理论与实践研究 (2024-QY-202),2024-2026,联合主持。
2. 国家自然科学基金面上项目,具有分级防护的可恢复功能桥梁结构体系研究 (51978513),2020.01.01-2023.12.31, 主持.
3. 国家自然科学基金面上项目,近断层强震脉冲作用下自复位钢框架的减震机制与 设计对策 (52078359), 2021.01-24.12.31,参与.
4. 国家自然科学基金面上项目,考虑减隔振装置非线性行为的无砟轨道桥梁噪声预测与控制 (51878501), 2019.01.01-2022.12.31,参与.
5. 国家自然科学基金面上项目,强台风荷载作用下输电塔线体系损伤和倒塌机理研究,(51678463), 2017.01.01-2020.12.31, 参与.
6. 上海市科学技术委员会,现役桥梁结构再生的减、隔震加固理论与试验研究, (16PJ1409600), 2016.07.01-2018.6.30,主持.
1. 研发的超韧性水泥基复合材料用于上海地铁18号线的浮置板湿接缝工程试验段。(世界上首次在地铁中采用湿接缝的长型浮置板)
2. 研发的智能预应力锚头成功应用于江苏常熟524国道快速路高架桥中。 (世界上首次采用智能预应力锚头用于桥梁的健康监测)
3. 研发的形状记忆合金(SMA)拉索支座成功应用于云南8度地震区的大田坝2号桥以及青海G347国道的20多座桥梁中。(世界上首次在实际桥梁工程中采用SMA拉索减隔震支座)
4. 提出了一种既能防反射裂缝又能承受重载车辆的新型路面结构型式,将10厘米厚的超高性能混凝土面层应用于G356福建永安段。(世界上首次采用了10cm厚薄层承重面层+4cm厚防反射裂缝沥青混凝土垫层的路面结构型式)
中文期刊:(*为通讯作者)
1. 郑越,王宇霄,郭军军,李方元*. 采用超高性能混凝土和限位装置的斜拉桥易损性分析 [J], 同济大学学报(自然科学版), 2023, 51(12): 1846-1858.
2. 张哲熹,梁栋,方成,郑越.采用SMA拉索的摇摆自复位桥墩试验研究与动力分析, 世界地震工程, 2020, 36(04):138-146.
3. 古泉, 张宁, 郑越*,高延性纤维增强水泥基复合材料(ECC)连续梁模型在地震荷载下的响应及其敏感性分析,工程力学. 2019, 36(6),157-163,182.
4. 郑越*, 徐利平. 泰州长江公路大桥钢结构桥塔的极限承载力研究, 公路交通科技, 5 (2): 51-53, 2009.
5. 郑越*, 陈兴冲. 考虑基础提离与塑性的桥墩地震反应,地震工程与工程振动. 29 (4): 125-131, 2009.
6. 郑越*, 陈兴冲, 戴利民, 杨士金. 柱式钢筋混凝土桥墩的弹塑性抗震简化计算, 公路交通科技. 23(4): 76-79, 2006.
7. 陈兴冲*, 郑越. 弹塑性Winkler地基上双柱式桥墩的地震反应, 工程力学. 22 (3): 112-117, 2005.
8. 常虹*, 郑越. 竖向承载地下连续墙的沉降计算, 中国公路学报. 16 (3): 73-76, 2003.
英文期刊:(*为通讯作者)
1. S Yu, Y Zheng*, C Fang**, Z Wang. Multi-stage damping plate-restrained bearings: Concepts, experimental validation, and numerical analysis. Engineering Structures, 2024, 300, 117215.
2. C Fang, C Cao, Y Zheng*, H Wu, W Wang and D Liang. Self-Centering energy-dissipative restrainers incorporating SMA ring springs. Journal of Structural Engineering, 2023, 149 (5), 11594.
3. J Guo, K Gao, X Dang, Y Zheng*, H Liang*. Seismic fragility assessment for highway bridges incorporating multi-level shape memory alloy cable dampers. Engineering Structures, 2023, 287, 116172.
4. C Fang, B Ping, Y Zheng*, W Ping, H Liang*. Seismic fragility and loss estimation of self-centering steel braced frames under mainshock-aftershock sequences. Journal of Building Engineering, 2023, 73, 106433.
5. C Fang, X Liu*, W Wang, Y Zheng. Full-scale shaking table test and numerical analysis of structural frames with SMA cable-restrained base isolation. Earthquake Engineering and Structural Dynamics, 42: 1-24, 2023. https://doi.org/10.1002/eqe.3953.
6. C Fang, C Cao, Y Xiao*, Y Zheng. Effect of corrosion on self-centering energy dissipative devices. Engineering Structures, 2023, 293, 116664.
7. X Yang, Y Gao, C Fang*, Y Zheng, W Wang. Deep learning-based bolt loosening detection for wind turbine towers. Struct Control Health Monit. 2022, e2943. doi:10.1002/stc.2943
8. X Li, C Zhang, Y Zheng*, Ning Zhang. A novel constrained UKF method for both updating structural parameters and identifying excitations for nonlinear structures. Soil Dynamics and Earthquake Engineering, 2022, 158, 107291.
9. Y Zheng, Y Gao*, S Lu and KM Mosalam. Multistage semisupervised active learning framework for crack identification, segmentation, and measurement of bridges. Computer-Aided Civil and Infrastructure Engineering, 2022, 1–20. https://doi.org/10.1111/mice.12851.
10. Y Zheng, H Wu*, X You*, H Xie. Model updating-based dynamic collapse analysis of a RC cable-stayed bridge under earthquakes. Structures, 2022, 43: 1100-1113.
11. C Fang, Y Ping, Y Gao*, Y Zheng, Y Chen. Machine learning-aided multi-objective optimization of structures with hybrid braces - Framework and case study. Engineering Structures, 2022, 269, 114808.
12. J Qian, Y Zheng, Y Dong*, H Wu, H Guo, J Zhang. Sustainability and resilience of steel-shape memory alloy reinforced concrete bridge under compound earthquakes and functional deterioration within entire life-cycle. Engineering Structures, 2022, 271, 114937.
13. N Zhang, Y Zheng, H Wu, X You*, J Chen*. A finite element-peridynamic combined multiscale analysis strategy based on implicit integration scheme. Structures, 2022, 45: 799-813.
14. Y Zheng, C Fang*, D Liang, R Sun. An innovative seismic-resilient bridge with shape memory alloy (SMA)-washer-based footing rocking RC piers. Journal of Intelligent Material Systems and Structures, 2021, 32 (5): 549-567.
15. C Fang, F Wang*, C Wang, Y Zheng*. Cyclic behavior of oval hollow section (OHS) beam-columns. Thin-Walled Structures, 2021, 161, 107430.
16. N Zhang, Q Gu, Y Dong, J Qian, Y Zheng*. Seismic performance of bridges with ECC-reinforced piers. Soil Dynamics and Earthquake Engineering, 2021, 146, 106753.
17. Y Ping, C Fang, Y Zheng*. Probabilistic economic seismic loss estimation of steel braced frames incorporating emerging self-centering technologies. Engineering Structures, 2021, 241, 112486.
18. C Fang, D Liang, Y Zheng*, S Lu. Seismic performance of bridges with novel SMA cable-restrained high damping rubber bearings against near-fault ground motions. Earthquake Engineering and Structural Dynamics, 2021, 1-22. https://doi.org/10.1002/eqe.3555.
19. Y Guo, C Fang*, Y Zheng. Post-fire hysteretic and low-cycle fatigue behaviors of Q345 carbon steel. Journal of Constructional Steel Research, 2021, 187, 106991.
20. C Fang, D Liang, Y Zheng*, MCH. Yam, R Sun. Rocking bridge piers equipped with shape memory alloy (SMA) washer springs. Engineering Structures, 2020, 110651, https://doi.org/10.1016/j.engstruct.2020.110651.
21. D Liang, Y Zheng, C Fang*, MCH Yam, C Zhang. Shape memory alloy (SMA)-cable-controlled sliding bearings: development, testing, and system behavior. Smart Materials and Structures, 2020, 085006, https://doi.org/10.1088/1361-665X/ab8f68.
22. Y Zheng and Y Dong*. Performance‑based assessment of bridges with steel‑SMA reinforced piers in a life‑cycle context by numerical approach. Bulletin of Earthquake Engineering, 2019, 17 (3): 1667-1888.
23. C Fang, Y Zheng*, J Chen, MCH Yam, W Wang. Superelastic NiTi SMA cables: thermal-mechanical behavior, hysteretic modelling and seismic application. Engineering Structures, 2019, 183: 533-549.
24. Y Zheng, YL Xu*, S Zhan. Seismic responses and collapse of a RC pedestrian cable-stayed bridge: shake table tests. International Journal of Structural Stability and Dynamics, 2019, 19 (7): 1950067.
25. Y Zheng, Y Dong, B Chen*, GA Anwar. Seismic damage mitigation of bridges with self-adaptive SMA-cable-based bearings. Smart Structures and Systems, 2019, 24 (1): 127-139.
26. Y Zheng, YL Xu*, Q Gu. Nonlinear model updating of a reinforced concrete pedestrian cable‐stayed bridge. Struct Control Health Monit. 2019, e2487. https://doi.org/10.1002/stc.2487.
27. B Chen*, D Yang, Y Zheng, K Feng and Y Ouyang. Response control of a high-rise television tower under seismic excitations by friction dampers. International Journal of Structural Stability and Dynamics, 2018, 18(11): 1850140.
28. Y Zheng, Y Dong* and Y Li. Resilience and life-cycle performance of smart bridges with shape memory alloy (SMA)-cable-based bearings. Construction and Building Materials, 2018, 158:389-400.
29. YL Xu*, Y Zheng and Q Gu. Refined dynamic progressive collapse analysis of RC structures. Bulletin of Earthquake Engineering, 2018, 16(3): 1293-1322.
30. Y Zheng, B Chen* and W Chen. Elasto-plastic seismic response of RC continuous bridges with foundation-pier dynamic interaction. Advances in Structural Engineering, 2015, 18(6): 817-836.
31. Y Zheng*, X Xiao, L Zhi and G Wang. Evaluation on impact interaction between abutment and steel girder subjected to non-uniform seismic excitation. Shock and Vibration, 2015, http://dx.doi.org/10.1155/2015/981804.
32. Y Zheng, Bo Chen* and W Chen. Evaluation on non-uniform seismic responses of a long span cable-stayed bridge based on SHM oriented model. Stahlbau, 2015, 84(4): 252-266, 2015.
33. L. Hu*, Y.L. Xu, and Y. Zheng, Conditional simulation of spatially variable seismic ground motions based on evolutionary spectra. Earthquake Engineering and Structural Dynamics, 41(15): 2125-2139, 2012.
34. Q Li, YL Xu, Y Zheng, A Guo, K Wong and Y Xia. SHM-based F-AHP bridge rating system with application to Tsing Ma Bridge. Frontiers of Architecture and Civil Engineering in China, 5(4): 465-478, 2011.
英文会议:
1. D. Liang, Y Zheng, C Fang. A novel SMA-cable-based pure friction sliding bearing for seismic resilient improvement of highway bridges, 17th World Conference on Earthquake Engineering, 13-18, Oct., 2020, Sendai, Japan.
2. Y. Zheng You Dong. Comparative seismic performance of conventional and resilient bridges with SMA-Cable-Based frictional sliding bearings, The 2017 World Congress on Advances in Structural Engineering and Mechanics, 28 Aug. - 1 Sep., 2017, Seoul, Korea.
3. Y.L. Xu, Y. Zheng, Q. Li, K.Y. Wong, Y. Xia, and A.X. Guo, SHM-Based Bridge Rating System for Long-Span Cable-Supported Bridge, 14th Asia Pacific Vibration Conference, 5-8 December 2011, Hong Kong, China.
4. Y. Zheng, Y.L. Xu, and L. Hu, Seismic Response of Analysis of Long-Span Cable-Stayed Bridge Subjected to Multi-Support Excitation, 5th International Symposium on Environmental Vibration, 20-21, October, 2011, Chengdu, China. (Invited Report)
文件上传中...