同济大学
导师风采
谭勇
浏览量:346   转发量:9

个人信息

Personal Information

  • 教授
  • 导师类别:硕士,博士生导师
  • 性别: 男
  • 学历:博士研究生
  • 学位:博士

联系方式

Contact Information

  • 所属院系:土木工程学院
  • 所属专业: 土木工程  、 地质资源与地质工程
  • 邮箱 : tanyong21th@tongji.edu.cn
  • 工作电话 : -

个人简介

Personal Profile

谭勇,同济大学土木工程学院地下建筑与工程系,教授、博导。分别于1999、2002年获得同济大学建筑工程专业本科和岩土工程专业硕士学位,于2005年10月获得美国马萨诸塞大学土木工程专业博士学位。2005年8月-2009年5月期间在美国佐治亚州萨凡纳市土木与环境工程公司Terracon Consultants, Inc.历任岩土工程师与项目工程师职务。2009年6月回国后历任同济大学土木工程学院地下建筑与工程系讲师(2009.6-2011.12)、副教授(2011.12-2016.12)及教授(2016.12-至今)。长期从事深基坑及隧道工程、城市地下工程气象灾害及防控、土木工程事故调查、基础工程及数值模拟技术与算法等领域的工程咨询及研究工作。主持和参加多项国家自然科学基金面上项目、科技部973、国家重点研发计划的研究,在国际土木工程专业学术期刊上发表学术论文50余篇,其中9篇论文为ESI高被引论文、爱思唯尔2020、2021、2022中国土木工程、地质资源与地质工程领域高被引学者、两篇期刊论文分别获得美国土木工程师学会工程事故调查分会(ASCE FED)建造设施性能期刊(Journal of Performance of Constructed Facilities)颁发的2014、2021年度杰出期刊论文奖(Outstanding JournalPaper Awards for 2014 and 2021)。

  • 研究方向Research Directions
深基坑、隧道及近接施工与环境保护,城市地下工程气象地质灾害链与防控,岩土及地下工程灾害诊断与事故调查,房屋及市政设施基础工程与地基处理,有限元、离散元数值模拟算法与技术
2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行2. 机电结构优化与控制 研究内容:在对机电结构进行分析和优化的基础上,运用控制理论进行结构参数的调整,使结构性能满足设计要求。1. 仿生结构材料拓扑优化设计, 仿生机械设计 研究内容:以仿生结构为研究对象,运用连续体结构拓扑优化设计理论和方法,对多相仿生结构(机构)材料进行整体布局设计。 整体布局设计。
项目情况

1.    国家自然科学基金面上项目, 暴雨-交通因素影响下管道渗蚀引发城市道路塌陷灾害及防治研究, 2022.01-2025.12,主持.

2.    国家自然科学基金面上项目, 暴雨气候下砂砾石地层中城市深开挖工程灾变机制研究,2019.01-2022.12, 主持.

3.    南通城市轨道交通有限公司科研项目, 全断面富水砂性地层中深基坑施工风险评估与防控保护关键技术研究, 2019.05-2022.12,主持.

4.    国家自然科学基金面上项目, 宏细观尺度下碎石混黏土地层中深开挖与临近既有盾构隧道相互影响机理研究,2017.01-2020.12, 主持.

5.    同济大学土木工程高峰学科国际一流科研合作基金项目, 考虑颗粒形状随机性的离散元细观算法及其在地下工程中的应用研究,2016.09-2020.12, 主持.

6.    国家重点研发计划, 滨海城市重大基础设施灾变机理、风险评估与监测预警原理与方法,2016.08-2020.12, 参与.

7.    上海市科学技术委员会项目, 中民外滩董家渡群基坑子课题-大型综合体群基坑施工全过程风险演变及控制研究,2016.01-2020.12, 参与.

8.    国家重点基础研究发展计划(973计划), 高水压越江海长大盾构隧道工程安全的基础研究,2015.01-2019.12, 参与.

9.    上海市教育委员会科技创新重点项目, 考虑三维空间效应的软土深基坑变形性状研究, 2013.01-2015.12,主持.

10. 教育部回国留学人员科研启动基金, 砂土地基强夯加固效果研究, 2012.01-2015.12, 主持.

11. 中铁第四勘察设计院集团有限公司城地院科研项目, 临近基坑工程对已建地铁结构影响的安全评估研究, 2011.10-2013.10,主持.

12. 中央高校基本科研业务费专项资金, 强夯冲击对周围环境的影响, 2012.01-2014.12, 主持.

13. 国家自然科学基金青年基金项目, 饱和砂土的强夯加固机理及动力学模型研究, 2010.01-2012.12,主持.

14. 同济大学岩土与地下工程教育部重点实验室自主科研基金, 面向低碳生态型城市商务区建设的地下空间规划理论及技术体系研究,2010.09-2012.06, 主持.

15. 美国麻省高速公路局(Massachusetts Highway Department)项目,沼泽地区泥炭土层中的钢板桩变形与设计研究, 2002.06-2005.11, 参与.

16. 美国自然科学基金(NSF)项目, 运用TekScan传感器技术对渥太华砂的流变性研究, 2002.06-2003.06, 参与.


科研项目

1.    国家自然科学基金面上项目, 暴雨-交通因素影响下管道渗蚀引发城市道路塌陷灾害及防治研究, 2022.01-2025.12,主持.

2.    国家自然科学基金面上项目, 暴雨气候下砂砾石地层中城市深开挖工程灾变机制研究,2019.01-2022.12, 主持.

3.    南通城市轨道交通有限公司科研项目, 全断面富水砂性地层中深基坑施工风险评估与防控保护关键技术研究, 2019.05-2022.12,主持.

4.    国家自然科学基金面上项目, 宏细观尺度下碎石混黏土地层中深开挖与临近既有盾构隧道相互影响机理研究,2017.01-2020.12, 主持.

5.    同济大学土木工程高峰学科国际一流科研合作基金项目, 考虑颗粒形状随机性的离散元细观算法及其在地下工程中的应用研究,2016.09-2020.12, 主持.

6.    国家重点研发计划, 滨海城市重大基础设施灾变机理、风险评估与监测预警原理与方法,2016.08-2020.12, 参与.

7.    上海市科学技术委员会项目, 中民外滩董家渡群基坑子课题-大型综合体群基坑施工全过程风险演变及控制研究,2016.01-2020.12, 参与.

8.    国家重点基础研究发展计划(973计划), 高水压越江海长大盾构隧道工程安全的基础研究,2015.01-2019.12, 参与.

9.    上海市教育委员会科技创新重点项目, 考虑三维空间效应的软土深基坑变形性状研究, 2013.01-2015.12,主持.

10. 教育部回国留学人员科研启动基金, 砂土地基强夯加固效果研究, 2012.01-2015.12, 主持.

11. 中铁第四勘察设计院集团有限公司城地院科研项目, 临近基坑工程对已建地铁结构影响的安全评估研究, 2011.10-2013.10,主持.

12. 中央高校基本科研业务费专项资金, 强夯冲击对周围环境的影响, 2012.01-2014.12, 主持.

13. 国家自然科学基金青年基金项目, 饱和砂土的强夯加固机理及动力学模型研究, 2010.01-2012.12,主持.

14. 同济大学岩土与地下工程教育部重点实验室自主科研基金, 面向低碳生态型城市商务区建设的地下空间规划理论及技术体系研究,2010.09-2012.06, 主持.

15. 美国麻省高速公路局(Massachusetts Highway Department)项目,沼泽地区泥炭土层中的钢板桩变形与设计研究, 2002.06-2005.11, 参与.

16. 美国自然科学基金(NSF)项目, 运用TekScan传感器技术对渥太华砂的流变性研究, 2002.06-2003.06, 参与.

研究成果

*,通讯作者 (http://scholar.google.com/citations?user=HF8ptPEAAAAJ; https://exaly.com/author/8668682/yong-tan/rankings)

1.      Tan, Y., Lu, Y., and Wang, D. L. (2023). “Interactive behaviorsof four closely spaced mega excavations in soft clays: Case study on anexcavation group in Shanghai, China.” Tunnelling and Underground Space Technology incorporatingTrenchless Technology Research 138: 105186, 30 pages (supplementary materials -14 pages). https://doi.org/10.1016/j.tust.2023.105186. (上海软土深大基坑群相互影响行为、相互作用机理模型及时空效应影响)

2.      Liu, J. C., and Tan, Y.* (2023). "Review ofthrough-wall leaking incidents during excavation of the subway stations ofNantong metro line 1 in thick water-rich sandy strata." Tunnelling andUnderground Space Technology incorporating Trenchless Technology Research 135: 105056,18 pages. https://doi.org/10.1016/j.tust.2023.105056. (富水砂性地层中深基坑地墙渗漏综述)

3.     Tan, Y., Lu, Y., and Wang, D. L. (2023). “Catastrophic failureof Shanghai metro line 4 in July, 2003: postaccident rehabilitation.” Journalof Performance of Constructed Facilities, ASCE, 37(2): 04023006, 25 pages. https://doi.org/10.1061/JPCFEV.CFENG-4135.(上海地铁四号线事故后修复介绍)

4.      Tan, Y., Lu, Y., and Wang, D. L. (2022). "Closure to"Catastrophic Failure of Shanghai Metro Line 4 in July, 2003: Occurrence,Emergency Response, and Disaster Relief" by Yong Tan, Ye Lu, and DalongWang." Journal of Performance of Constructed Facilities, ASCE, 36(2):07021006, 5 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001704.    

5.      Jiang, W. Z., and Tan, Y.* (2022). “Overview on failuresof urban underground infrastructures in complex geological conditions due to heavyrainfall in China during 1994-2018.” Sustainable Cities and Society 76 (Jan.): 103509, 20pages (supplementary materials - 77 pages) https://doi.org/10.1016/j.scs.2021.103509. (暴雨气候下复杂地质环境中城市地下工程灾害综述)

6.     Tan, Y.*, Fan, D., and Lu, Y. (2022). “Statistical analyses on a databaseof deep excavations in Shanghai soft clays in China from 1995-2018.” PracticePeriodical on Structural Design and Construction, ASCE, 27(1): 04021067, 18pages (supplementary materials - 39 pages) https://doi.org/10.1061/(ASCE)SC.1943-5576.0000646.(上海软土深基坑工程大数据统计分析)

7.    Song, X. H., and Tan, Y.* (2021). "Experimentalinvestigation on the influences of rainfall patterns on instability of sandyslopes." Environmental Earth Sciences 80, Article number 803, 21 pages. https://doi.org/10.1007/s12665-021-10118-6.  

8.    Tan, Y.*, and Long, Y. Y.(2021). “Review of cave-in failures of urban roadways in China: a database.”Journal of Performance of Constructed Facilities, ASCE, 35(6): 04021080, 20pages (supplementary materials - 132 pages). https://doi.org/10.1061/(ASCE)CF.1943-5509.0001658.(中国城市道路塌陷灾害数据库统计分析)

9.     Jiang, W. Z., and Tan, Y.* (2021). “Heavyrainfall-related excavation failures in China during 1994 to 2018: an overview.”Engineering Failure Analysis, 129(Nov.), 105695, 15 pages (supplementarymaterials - 34 pages). https://doi.org/10.1016/j.engfailanal.2021.105695.(暴雨气候下中国城市深基坑工程灾害事故综述)

10.  Song, X. H., Cui,S. W., Tan, Y.*, and Zhang, Y. F.(2021). “Influence of water pressure on deep subsea tunnel buried within sandyseabed.” MarineGeoresources & Geotechnology, 16 pages. https://doi.org/10.1080/1064119X.2021.1961954.

11.  Lu, Y., Tan, Y.*, Yang, B., and Chen, W. L.(2021). “Ground subsidence hazards due to crushing and removing large isolatedboulder by tunneling.” Journal of Performance of Constructed Facilities, ASCE,35(2): 04020149, 14 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001558.

12.  Tan, Y., Lu, Y., and Wang, D. L. (2021). “Catastrophic failureof Shanghai metro line 4 in July, 2003: Occurrence, emergency response, anddisaster relief.” Journal of Performance of Constructed Facilities, ASCE,35(1): 04020125, 16 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001539. (上海地铁四号线工程事故调查) 

13.  Cui, S., Tan, Y.*, and Lu, Y. (2020). “Algorithmfor generation of 3D polyhedrons for simulation of rock particles by DEM andits application to tunneling in boulder-soil matrix." Tunnelling andUnderground Space Technology 106, 103588, 19 pages. https://doi.org/10.1016/j.tust.2020.103588. (不规则形状碎石颗粒三维细观模拟算法介绍)

14.  Tan, Y., Jiang, W. Z., Rui, H. S., Lu, Y., and Wang, D. L.(2020). “Forensic geotechnical analyses on the 2009 building-overturningaccident in Shanghai, China: beyond common recognitions." Journal ofGeotechnical and Geoenvironmental Engineering, ASCE, 146(7), 05020005, 26 pages(supplementary materials - 62 pages). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002264. (上海“楼倒倒”事故调查研究论文,点击链接可免费下载该论文正文及文章末尾“详细计算证明”附件补充材料)迄今为止,关于2009年6月发生在上海市闵行区淀浦河畔莲花小区的楼倒倒事故原因仍然存在很大争议。已有的“楼房两侧过大土压力差超过桩基抗侧能力”、“车库基坑侧楼房桩基首先受剪或受弯破坏导致整栋楼房渐进性倒下”、“车库基坑开挖导致楼房下土体被掏空,同时堆土造成地基土向淀浦河方向滑动”、“楼房两侧土压力差与淀浦河水在地基土中的渗流耦合综合作用”、“PHC管桩存在质量缺陷”、“车库基坑降水导致淀浦河水倒灌基坑致灾”、“风吹倒”等观点是否科学合理、符合事实?到底是“桩断了、楼倒了”或“楼歪了、桩断了、楼倒了”?本次事件的真正事故原因到底是什么?此外,本次事件中下列重要现象也没有受到各方的重视并给出令人信服的解释:(1) 10米高堆土旁的7号楼突然倒下了,而7号楼边上的6号楼同样靠近10米高堆土却安然无恙,为什么?(2) 10米高堆土南侧33米长桩基的7号楼突然倒下了而堆土北侧条形浅基础的淀蒲河防汛墙却巍然不动,为什么?(3) 虽然10米高堆土北侧的防汛墙安然无恙,但在楼倒前一天中午10号、11号楼北侧6米高堆土北侧淀浦河防汛墙却发生了大规模破坏,为什么?(4)两处堆土场地的地基是否破坏、其破坏形式是什么?(5) 楼倒前长达5小时的强降雨在本次事件中扮演了什么样的角色?基于现场观察证据、极限平衡稳定性分析、理论计算、设计复核、和三维数值仿真模拟分析结果,本文对上述事故原因及相关现象进行了逐一解释与探讨)

15.  Song, X. H., and Tan, Y.* (2020). “Experimental study onfailure of temporary earthen slope triggered by intense rainfall.”EngineeringFailure Analysis 116, 104718, 13 pages. https://doi.org/10.1016/j.engfailanal.2020.104718.

16.  Long, Y. Y., and Tan, Y.* (2020). “Soil arching due toleaking of tunnel buried in water-rich sand.” Tunnelling and Underground SpaceTechnology 95, 103158, 18 pages. https://doi.org/10.1016/j.tust.2019.103158. (富水砂性地层中隧道渗漏情况下地层土拱效应) 

17.  Lu, Y., and Tan, Y.* (2019). “Overview of typicalexcavation failures in China.” Geotechnical Special Publication 313 (GSP 313),315-332, 18 pages. https://doi.org/10.1061/9780784482155.033.(典型基坑工程事故破坏形式总结)

18.  Tan, Y., Wei, B., Lu, Y., and Yang, B. (2019). “Is basalreinforcement essential for long and narrow subway excavation bottoming out inShanghai soft clay?” Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 145(5), 05019002, 14 pages. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002028. (对于软土基坑,坑底软土地层加固是否必要?)

19.  Tan, Y., Lu, Y., and Wang, D. (2019). “Practical solutions forconcurrent excavation of neighboring mega basements closely surrounded byutility tunnels in Shanghai Hongqiao CBD.” Practice Periodical on StructuralDesign and Construction, ASCE, 24(4), 05019005, 23 pages. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000437.

20.  Lu, Y., Tan, Y.*, and Lan, H. (2019).“Full-scale load testing of 75-90-m-long post-grouted drilled shafts in Suzhoustiff clay.” Journal of Testing and Evaluation, ASTM, 47(1): 284-309. https://doi.org/10.1520/JTE20170442. (苏州黏土地层中超长、大直径后注浆灌注桩现场足尺抗压、抗拔试验研究)

21.  Lu, Y., Tan, Y.*, and Li, X. (2018). “Stabilityanalyses on slopes of clay-rock mixtures using discrete element method.”Engineering Geology 244: 116-124. https://doi.org/10.1016/j.enggeo.2018.07.021.

22.  Tan, Y., Lu, Y., Xu, C., and Wang, D. (2018). “Investigation onperformance of a large circular pit-in-pit excavation in clay-gravel-cobblemixed strata.” Tunnelling and Underground Space Technology 79: 356-374. https://doi.org/10.1016/j.tust.2018.06.023. (复合地层中大型坑中坑圆形基坑变形与力学响应研究)

23.  Tan, Y.*, Jiang, W., Luo, W., Lu, Y., and Xu, C. (2018).“Longitudinal sliding event during excavation of Feng-Qi Station of HangzhouMetro Line 1: Postfailure investigation.” Journal of Performance of ConstructedFacilities, ASCE, 32(4), 04018039, 27 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001181. (软土地层中狭长型地铁基坑纵向滑坡事故调查)

24.  Tan, Y., and Lu, Y. (2018). “Responses of shallowly buriedpipelines to adjacent deep excavations in Shanghai soft ground.” Journal ofPipeline Systems Engineering and Practice, ASCE, 9(2), 05018002, 14 pages. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000310. (软土基坑开挖对临近浅埋管线的影响)

25.  Tan, Y., Lu, Y., and Wang, D. (2018). “Deep excavation of theGate of the Orient in Suzhou stiff clay: Composite earth retaining systems anddewatering plans.” Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 144(3), 05017009, 21 pages. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001837. (苏州“东方之门”深大基坑开挖变形及降水影响研究论文,点击链接可免费下载该论文正文与文章末尾附件补充材料)

26.  Tan, Y.*, Zhu, H., Peng, F., Karlsrud, K., and Wei, B. (2017). “Characterizationof semi-top-down excavation for subway station in Shanghai soft ground.”Tunnelling and Underground Space Technology 68: 244-261. https://doi.org/10.1016/j.tust.2017.05.028. (上海软土地区半逆作地铁深基坑变形行为研究)  

27.  Tan, Y., and Lu, Y. (2017). “Forensic diagnosis of a leakingaccident during excavation.” Journal of Performance of Constructed Facilities,ASCE, 31(5), 04017061, 15 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001058.(上海深层承压水诱发深基坑地墙渗漏事故调查)

28.  Lu, Y., Tan, Y.*, Li, X., and Liu, C. (2017).“Methodology for simulation of irregularly shaped gravel grains and itsapplication to DEM modeling.” Journal of Computing in Civil Engineering, ASCE,31(5), 04017023, 11 pages. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000676. (不规则形状碎石颗粒二维细观模拟算法介绍)

29.  Tan, Y.*, Wang, D., Lu, Y., and Fang, T. (2017). “Excavation ofMiddle Huai-Hai Road Station of Shanghai Metro Line 13: challenges, risks,countermeasures and performance assessment.” Practice Periodical on StructuralDesign and Construction, ASCE, 22(3), 05017003, 14 pages. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000320.

30.  Tan, Y., and Lu, Y. (2017). “Why excavation of a small air shaftcaused excessively large displacements: forensic investigation.” Journal ofPerformance of Constructed Facilities, ASCE, 31(2), 04016083, 20 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000947.(为什么小基坑开挖也可能会导致大变形工程事故?)

31.  Tan, Y.*, Huang, R., Kang, Z., and Wei, B. (2016). “Coveredsemi-top-down excavation of subway station surrounded by closely spacedbuildings in downtown Shanghai: building response.” Journal of Performance ofConstructed Facilities, ASCE, 30(6), 04016040, 26 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000892. (浅基础与深基础建筑物在临近深基坑开挖过程中的力学响应分析)

32.  Tan, Y.*, Li, X., Kang, Z., Liu, J., and Zhu, Y. (2015). “Zonedexcavation of an oversized pit close to an existing metro line in stiff clay:case study.” Journal of Performanceof Constructed Facilities, ASCE, 29(6), 04014158, 19 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000652. (硬黏土地层中超大基坑分区施工对临近隧道与地铁车站的影响调查研究)

33.  Tan, Y.*, Wei, B., Zhou, X., and Diao, Y. (2015). “Lessonslearned from construction of Shanghai metro stations: importance of quickexcavation, prompt propping, timely casting and segmented construction.”Journal of Performance of Constructed Facilities, ASCE, 29(4), 04014096, 15pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000599. (上海软土地铁深基坑施工经验与教训– 证“时空效应原理”对开挖变形控制的重要性)

34.  Tan, Y.*, and Wang, D. (2015a). “Structural behaviors of largeunderground earth-retaining systems in Shanghai. I: unpropped circulardiaphragm wall.” Journal of Performance of Constructed Facilities, ASCE, 29(2),04014058, 14 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000521.(无支撑圆形地墙结构力学变形行为)

35.  Tan, Y.*, and Wang, D. (2015b). “Structural behaviors of largeunderground earth-retaining systems in Shanghai. II: multipropped rectangulardiaphragm wall.” Journal of Performance of Constructed Facilities, ASCE, 29(2),04014059, 16 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000535.(多支撑矩形地墙结构力学变形行为)

36.  Tan, Y.*, Wei, B., Diao, Y., and Zhou, X. (2014). “Spatial cornereffects of long and narrow multipropped deep excavations in Shanghai softclay.” Journal of Performance of Constructed Facilities, ASCE, 28(4), 04014015,17 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000475. (上海软土狭长型地铁深基坑空间角效应调查) 

37.  Tan, Y.*, Lin, G., Zhang, Y., and Li, X. (2015). “Closure to"Comprehensive Load Test on Prestressed Concrete Piles in Alluvial Claysand Marl in Savannah, Georgia" by Yong Tan and Guoming Lin.” Journal ofPerformance of Constructed Facilities, ASCE, 29(1), 07014002, 8 pages. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000712.

38.  Tan, Y.*, and Lin, G. (2014). “Comprehensive load test onprestressed concrete piles in alluvial clay and marl in Savannah, Georgia. Journalof Performance of Constructed Facilities, ASCE, 28(1): 178-190. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000305.

39.  Tan, Y.*, and Wang, D. (2013a). “Characteristics of a large-scaledeep foundation pit excavated by the central-island technique in Shanghai softclay. I: bottom-up construction of the central cylindrical shaft.” Journal ofGeotechnical and Geoenvironmental Engineering, ASCE, 139(11): 1875-1893. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000928. (中心岛法施工上海环球金融中心基坑I:顺作法施工中心塔楼无支撑圆形基坑)  

40.  Tan, Y.*, and Wang, D. (2013b). “Characteristics of a large-scaledeep foundation pit excavated by the central-island technique in Shanghai softclay. II: top-down construction of the peripheral rectangular pit.” Journal ofGeotechnical and Geoenvironmental Engineering, ASCE, 139(11): 1894-1910. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000929. (中心岛法施工上海环球金融中心基坑II:逆作法施工周边裙楼基坑)  

41.  Lu, Y., Tan, Y.*, and Lin, G. (2013).“Characterization of thick varved clayey silt deposits along the Delaware Riverby field and laboratory tests.” Environmental Earth Sciences, 69(6): 1845-1860.https://doi.org/10.1007/s12665-012-2020-5.

42.  Tan, Y.*, and Lin, G. (2013). “Full-scale testing of open-endedsteel pipe piles in thick varved clayey silt deposits along the Delaware Riverin New Jersey.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE,139(3): 518-524. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000777.

43.  Tan, Y.*, and Wei, B. (2012). “Performance of an overexcavatedmetro station and facilities nearby.” Journal of Performance of ConstructedFacilities, ASCE,26(3): 241-254. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000231.

44.  Lu, Y., and Tan, Y.* (2012). “Examination of loosesaturated sands impacted by a heavy tamper.” Environmental Earth Sciences,66(5): 1557-1567. https://doi.org/10.1007/s12665-011-1395-z.

45.  Tan, Y.*, and Wei, B. (2012). “Observed behavior of a long anddeep excavation constructed by cut-and-cover technique in Shanghai soft clay.”Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138(1): 69-88. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000553.(上海软土地层中狭长型明挖法深基坑变形行为)

46.  Tan, Y.*, and Lan, H. (2012). “Vibration effects attributable todriving of PHC pipe piles.” Journalof Performance of Constructed Facilities, ASCE, 26(5): 679-690. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000278.

47.  Tan, Y.*, Lu, Y., Peng, F., and Liao, S. (2012). “Isolation ofDDC impact to sheet pile walls by open trenches.” Journal of Geotechnical andGeoenvironmental Engineering, ASCE, 138(1): 110-114. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000544.

48.  Tan, Y.*, and Li, M. (2011). “Measured performance of a 26 m deeptop-down excavation in downtown Shanghai.” Canadian Geotechnical Journal,48(5): 704-719. https://doi.org/10.1139/t10-100.(上海软土地层中逆作法深基坑变形行为)

49.  Lu, Y., and Tan, Y.* (2011). “Mitigation ofbuilding responses due to DDC impact by soft and stiff wave barriers.” Journalof Vibration and Control, 17(2): 259-277. https://doi.org/10.1177/1077546309355297.

50.  Tan, Y.*, Lu, Y., and Peng, F. L. (2010). “Semiempirical approachfor estimation of DDC-induced deflections of sheet pile walls in peat.” Journalof Performance of Constructed Facilities, ASCE, 24(1): 87-95. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000059.

51.  Tan, Y.*, and Lu, Y. (2009). “Parametric studies of DDC-induceddeflections of sheet pile walls in soft soils.” Computers and Geotechnics 36:902-910. https://doi.org/10.1016/j.compgeo.2009.01.004.

52.  Tan, Y.*, and Lu, Y. (2008). “Compaction-induced earth pressuresagainst a sheet pile wall in peat.” Transportation Research Record: Journal ofthe Transportation Research Board No.2045: 29-38. https://doi.org/10.3141/2045-04.

53.  Tan, Y.*, and Paikowsky, S. G. (2008). “Performance of sheet pilewall in peat.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE,134(4): 445-458. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:4(445).

54.  Tan, Y.* (2008). “Finite element analysis of highway constructionin peat bog.” Canadian Geotechnical Journal, 45(2): 147-160. https://doi.org/10.1139/T07-076.

55.  刘俊城,谭勇*,张生杰. 地铁车站深基坑开挖变形智能多步预测方法[J], 上海交通大学学报,2023,https://kns.cnki.net/kcms/detail//31.1466.U.20230227.1205.004.htm.

56.  刘俊城,谭勇*,宋享桦,樊冬冬,刘天任. 富水砂土基坑渗水对侧墙变形和周边环境的影响[J], 浙江大学学报(工学版),2023,57(3):530-541.

57.  张生杰,谭勇*. 基于 LSTM 算法的基坑变形预测[J],隧道建设, 2022, 42(1): 113-120.

58. 杨波,谭勇*. 土石混合体地层中基坑开挖对邻近既有隧道影响[J], 哈尔滨工业大学学报, 2021,53(11):1-13.

59.   刘天任, 谭勇*, 李金龙. 2021. 基于CFD-DEM耦合分析暴雨作用下砂土深基坑灾变研究[J]. 路基工程,214(1):1-9.

60.  刘祥勇,宋享桦,谭勇,景旭成. 南通深厚富水砂性地层地铁深基坑抽水回灌现场试验研究[J],岩土工程学报,2020,42(7):1331-1340.

61.  樊冬冬,刘祥勇,景旭成,谭勇*. 南通富水砂性地层地铁深基坑墙体渗漏原因分析[J], 隧道建设, 2020,40(S1): 225-231.

62.  宋享桦,谭勇*,张生杰 . 暴雨气候下砂土边坡植被护坡模型试验研究[J], 哈尔滨工业大学学报,2020, DOI:10.11918/201908166.

63.  杨波,谭勇*. 土石混合体地层中基坑开挖对邻近既有隧道影响模型试验研究[J], 隧道建设,2019, 39(S2): 192-199.

64.  宋享桦, 谭勇*, 刘俊岩, 刘燕, 马桂宁.拉拔作用下锚杆复合土钉支护协同作用细观机制研究[J], 岩石力学与工程学报,2019,38(3): 591-605.

65.  蒋维真,谭勇*. 某软土地铁车站基坑纵向滑坡事故分析[J], 隧道建设, 2018,A02, 183-189.

66.  龙莹莹,谭勇*. 富水砂层中隧道渗蚀灾害的初步细观模拟分析[J], 现代隧道技术, 2018,55(S2): 501-510.

67.  陈万垒, 谭勇*,李想,柳楚楠. 盾构掘进破坏孤石诱发地层塌陷的灾变机制研究[J], 隧道建设, 2018,38 (5): 824-832.

68.  张宇飞, 谭勇*, 柳楚楠, 李想. 基于离散元法细观分析的隧道掘进对砾石地层扰动的初步研究[J],隧道建设, 2017, 37(a02), 128-135.

69.  康志军, 谭勇*, 李金龙. 基于流-固耦合的盾构隧道开挖面稳定性研究[J],隧道建设, 2017, 37(10): 1287-1295.

70.  康志军, 黄润秋, 卫彬, 谭勇*. 上海软土地区某逆作法地铁深基坑变形分析[J],浙江大学学报(工学版), 2017, 51(8),1527-1536.

71.  康志军, 谭勇*, 李想, 卫彬, 徐长节. 基坑围护结构最大侧移深度对周边环境的影响[J], 岩土力学, 2016,37(10): 2909-2914, 2920.

72.  谭勇*, 康志军, 卫彬, 邓刚. 上海软土地区某地铁风井深基坑案例分析[J], 浙江大学学报(工学版), 2016, 50(5): 1048-1055.

73.  康志军*, 谭勇, 邓刚, 卫彬. 被动区土体加固对深基坑变形影响的研究[J],长江科学院院报, 2016(33): 1-6.

74.  卫彬*, 李想, 谭勇.上海某地铁深基坑工程施工案例分析[J], 施工技术,2015(7): 72-76.

75.  廖少明*, 魏仕锋, 谭勇,柳骏茜. 苏州地区大尺度深基坑变形性状实测分析[J], 岩土工程学报, 2015, (03): 458-469.

76.  魏仕锋, 谭勇, 廖少明*,申明亮. 钱江隧道盾构试验井深基坑实测分析[J],土木工程学报, 2014,47(8): 112-119.

77.  朱炎兵*, 周小华, 魏仕锋, 谭勇. 建造过程对运营地铁车站结构内力变化影响分析[J],铁道建筑, 2014, (1): 62-66.

78.  朱炎兵*, 周小华, 魏仕锋, 谭勇. 临近既有地铁车站的基坑变形性状研究[J],岩土力学, 2013, (10): 2997-3002.

学生信息
当前位置:教师主页 > 学生信息
入学日期
所学专业
学号
学位
招生信息
当前位置:教师主页 > 招生信息
招生学院
招生专业
研究方向
招生人数
推免人数
考试方式
招生类别
招生年份

同济大学研究生院招生办公室

360eol提供技术支持

Copyright © 2011 -All Rights Reserved 苏ICP备08015343号-4

文件上传中...

分享
回到
首页
回到
顶部