化学科学与工程学院-黄智鹏导师介绍

更新于 2023-08-01 导师主页
黄智鹏 教授 硕,博士生导师
化学科学与工程学院
化学 ,化学
非线性光学材料,低维半导体材料光电性能
zphuang@tongji.edu.cn

博士招生专业

1
化学(博士)
2024
1
学术型博士
光电功能材料化学
2
材料与化工(博士)
2023
1
学术型博士
光电功能分子材料与器件

招生信息

1
化学
2024
1
学术型硕士
光电功能材料化学
2
材料与化工
2023
1
学术型硕士
光电功能分子材料与器件

研究聚焦于低维半导体材料非线性光学性能的调控。共发表学术论文120余篇,总被引用近7000次。近五年以通讯(含共同通讯)作者在Adv. Mater., Adv. Funct. Mater., ACS Nano, Adv. Sci., Nano Energy, Adv. Optical Mater.等期刊上发表论文30余篇,论文他引增加2600余次。2016年获教育部自然科学奖一等奖(排名第二)。2018年入选中组部万人计划青年拔尖人才。


展开更多

科研项目

1. 第三批中组部青年拔尖人才,2018年

2. 江苏省高层次创新创业人才引进计划,2013年

3.  国家自然科学基金面上项目,2018年,2023年

4. 国家自然科学基金青年基金,2011年

5. 上海市自然科学基金,2023年

6. 江苏省自然科学基金面上项目,2013年

7. 江苏省六大人才高峰项目,2011年

8. 教育部留学回国人员基金,2011年

8. 江苏省高校自然科学基金,2010年


展开更多

研究成果

期刊论文: 122, 总被引次数: 6946, H-Index: 36

代表性论文

1. H. Li, S.Y. Chen, D. W. Boukhavalov, Z.Y. Yu, M.G. Humphrey, Z.P. Huang*, C. Zhang*, Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations, ACS Nano, 2022, 16(1), 394-404

2. M.J. Diao,H. Li, X.Y. Gao, R.P. Hou, Q. Cheng, Z.Y. Yu, Z.P. Huang*, C. Zhang*, Giant Nonlinear Optical Absorption of Ion-Intercalated Tin Disulfide Associated with Abundant In-Gap Defects, Advanced Functional Materials, 2021, 31(49), 2106930

3. L. Yuan, S. Li, S. C. Xu, X. F. Yang, J. L. Bian, C. C. Lv, Z. Y. Yu, T. He, Z. P. Huang*, D. W. Bukhvalov*, C. W. Cheng, Y. Q. Huang, C. Zhang*, Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide, Nano Energy, 2021, 82,105732.

4. S. M. Thalluri, L. C. Bai, C. C. Lv, Z. P. Huang*, X. L. Hu*, L. F. Liu*, Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting, Advanced Science, 2020, 7, 1902102.

5. L. L. Ji, C. C. Lv, Z. F. Chen*, Z. P. Huang*, C. Zhang*, Nickel-Based (Photo)Electrocatalysts for Hydrogen Production, Advanced Materials, 2018, 30, 1705653.

论文列表

122. Jie Dong, Danil W. Boukhvalov, Cuncai Lv, Mark G. Humphrey, Chi Zhang, Zhipeng Huang*, Enhancing the electrocatalytic activity of metal– organic frameworks in the oxygen evolution reaction by introducing high-valent metal centers, Journal of Materials Chemistry A, 2023, DOI: 10.1039/d3ta01869e

121. Bingyue Li, Hui Li, Yanhui Sun, Mark G. Humphrey, Chi Zhang*, Zhipeng Huang*, Defect-Dependent Nonlinear Absorption in the Lead-Free Double-Perovskite Cs2AgBiBr6, ACS Applied Materials & Interfaces, DOI:10.1021/acsami.2c23266.

120. Yanhui Sun, Hui Li, Xiangyun Gao, Mark G Humphrey, Chi Zhang*, and Zhipeng Huang*, Promoting the nonlinear optical absorption of conjugated polymers by in-gap states modulation via chemical dedoping, Materials Today Physics, Accepted.

119. Zhiyuan Wei, Zihao Guan, Naying SHan, Hui Li, Yan Fang, Yang Zhao, Lulu Fu*, Zhipeng Huang, Mark G Humphrey, Chi Zhang*, Porphyrin covalently functionalized MoS2 nanosheets: "Click" synthesis and tunable nonlinear absorption, Journal of Alloys and Compounds, 2023, 934, 167902.

118. Zihao Guan, Hui Li, Zhiyuan Wei, Naying Shan, Yan Fang, Yang Zhao, Lulu Fu, Zhipeng Huang, Mark G Humphrey, Chi Zhang*, Enhanced nonlinear optical performance of perovskite films passivated by porphyrin derivatives, Journal of Materials Chemistry C, 2023, 11(4), 1509-1521.

 

2022 (102-117) 

117. H. Li, S.Y. Chen, D. W. Boukhavalov, Z.Y. Yu, M.G. Humphrey, Z.P. Huang*, C. Zhang*, Switching the Nonlinear Optical Absorption of Titanium Carbide MXene by Modulation of the Surface Terminations, ACS Nano, 2022, 16(1), 394-404

116. L. Yuan, D.W. Boukhvalov, C.C. Lv, J. Dong, T. He, Z.Y. Yu, W.J. Luo, C.W. Cheng, M.G. Humphrey, C. Zhang*, Z.P. Huang*, TiO2-enhanced in situ electrochemical activation of Co3O4 for the alkaline hydrogen evolution reaction, Journal of Materials Chemistry A, 2022, 10(26), 13769-13779

115. R.P. Hou, H. Li, M.J. Diao, Y.H. Sun, Y. Liang, Z.Y. Yu, Z.P. Huang*, C. Zhang*, Fast electrochemical activation of the broadband saturable absorption of tungsten oxide nanoporous film, Nano Research, 2022, 15, 326-332.

113. C.C. Lv, J.F. Liu, P.P. Lou,X.B. Wang, L.J. Gao, S.F. Wang*,  Z.P. Huang*, Nanoscale, 2022, 14(14), 5430-5438.

112. J. Dong, C.C. Lv, M.G. Humphrey, C. Zhang*, Z.P. Huang*,One-dimensional amorphous cobalt(II) metal-organic framework nanowire for efficient hydrogen evolution reaction, Inorganic Chemistry Frontiers, 2022, 9(16), 4184-4193

111.C.N. Wu, H. Li, Y.H. Sun, R.P. Hou, Z.P. Huang*, C. Zhang*, Oxidation-State-Dependent Nonlinear Absorption of Prussian Blue, Journal of Electronic Materials, 2022, 51, 249-258

 

110. Tianhui Wu, Xingxing Jiang, Chao Wu, Yilei Wu, Zheshuai Lin, Zhipeng Huang, Mark G Humphrey, Chi Zhang, Ultrawide Bandgap and Outstanding Second-Harmonic Generation Response by a Fluorine-Enrichment Strategy at a Transition-Metal Oxyfluoride Nonlinear Optical Material, Angewandte Chemie International Edition, 2022, 61(26), e202203104

109. Chao Wu, Xingxing Jiang, Yilei Hu, Chunbo Jiang, Tianhui Wu, Zheshuai Lin, Zhipeng Huang, Mark G. Humphrey, Chi Zhang, A Lanthanum Ammonium Sulfate Double Salt with a Strong SHG Response and Wide Deep-UV Transparency, Angewandte Chemie International Edition, 2022, 61(6), e202115855

108. Chao Wu, Guangfeng Wei, Xingxing Jiang, Qinke Xu, Zheshuai Lin, Zhipeng Huang, Mark G Humphrey, Chi Zhang*, Additive-Triggered Polar Polymorph Formation: beta-Sc(IO3)(3), a Promising Next-Generation Mid-Infrared Nonlinear Optical Material, Angewandte Chemie International Edition, 2022, 10.1002/anie.202208514

107. Chunbo Jiang, Xingxing Jiang, Chao Wu, Zhipeng Huang, Zheshuai Lin, Mark G Humphrey, Chi Zhang*, Isoreticular Design of KTiOPO4-Like Deep-Ultraviolet Transparent Materials Exhibiting Strong Second-Harmonic Generation, Journal of the American Chemical Society, 2022, 144, 44, 20394-20399.

106. Yilei Hu, Xingxing Jiang, Tianhui Wu, Yanyan Xue, Chao Wu, Zhipeng Huang, Zheshuai Lin, Jun Xu, Mark G Humphrey, Chi Zhang*, Wide bandgaps and strong SHG responses of hetero-oxyfluorides by dual-fluorination-directed bandgap engineering, Chemical Science, 2022, 13,(35), 10260-10266.

105. L.L. Fu, J. Ye, H. Li, Z.P. Huang, M. G. Humphrey, C. Zhang*, Strong near-infrared and ultrafast femtosecond nonlinearities of a covalently-linked triply-fused porphyrin dimer-SWCNT nanohybrids, Nano Research, 2022, 15, 1355-1365.

104. Lulu Fu, Hui Li, Yan Fang, Zihao Guan, Zhiyuan Wei, Naying Shan, Fang Liu, Yang Zhao, Mingfei Zhang, Zhipeng Huang, Mark G Humphrey, Chi Zhang*, Cascading electron transfer and photophysics in a donor-pi-acceptor graphene nanoconjugate, Nano Research, 2022, DOI10.1007/s12274-022-5167-8

103. Lulu Fu, Yan Fang, Zihao Guan, Zhiyan Wei, Rui Yang, Naying Shan, Fang Liu, Yang Zhao, Mingfei Zhang, Zhipeng Huang, Mark G Humphrey, Chi Zhang*, Dramatic femtosecond nonlinear absorption at a strongly coupled porphyrin-graphene nanoconjugate, Nano Research, DOI10.1007/s12274-022-5155-z

102. Yan Fang, Hui Li, Zhiyuan Wei, Zihao Guan, Naying Shan, Zhipeng Huang, Mark G Humpnrey, Chi Zhang*, Covalent functionalization of few-layer TiS2 with tetraphenylporphyrin: toward a donor-acceptor nanohybrid featuring enhanced nonlinear saturation absorption, Journal of Materials Chemistry C, 2022, 10(30), 10876-10887

 

 

2021 (77-101)

101. M.J. Diao,H. Li, X.Y. Gao, R.P. Hou, Q. Cheng, Z.Y. Yu, Z.P. Huang*, C. Zhang*, Giant Nonlinear Optical Absorption of Ion-Intercalated Tin Disulfide Associated with Abundant In-Gap Defects, Advanced Functional Materials, 2021, 31(49), 2106930

100. L. Yuan, S. Li, S. C. Xu, X. F. Yang, J. L. Bian, C. C. Lv, Z. Y. Yu, T. He, Z. P. Huang*, D. W. Bukhvalov*, C. W. Cheng, Y. Q. Huang, C. Zhang*, Modulation of Volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide, Nano Energy, 2021, 82,105732.

99. Y.H. Sun, H. Li, X.Y. Gao, Z.Y. Yu, Z.P. Huang*, C. Zhang*, Superb Nonlinear Absorption of Triphenylene-Based Metal-Organic Frameworks Associated with Abundant Metal d Electrons, Advanced Optical Materials, 2021, 9(17), 2100622.

98. R. P. Hou, H. Li, Y. H. Sun, M. J. Diao, Y. Liang, Z. P. Huang*, J. Wang, M. G. Humphrey, C. Zhang*, Electrical Tuning of the Fifth-Order Optical Nonlinearity of Antimony-Doped Tin Oxide, Advanced Optical Materials, 2021, 9(2), 2001357.

97. H. Li, R.P. Hou, Y.H. Sun, M.J. Diao, Y. Liang, X. Chen, Z.P. Huang*, J. Wang, M.G. Humphrey, Z.Y. Yu, C. Zhang*, Switching the Nonparametric Optical Nonlinearity of Tungsten Oxide by Electrical Modulation, Advanced Optical Materials, 2021, 9(12), 2002188.

96. M. J. Diao, H. Li, Y. H. Sun, Y. Liang, Z. Y. Yu, D. W. Bukhvalov, Z. P. Huang*, C. Zhang*, Enhancing reverse saturable absorption in SnS2 nanosheets by Plasma Treatment, ACS Applied Materials & Interfaces, 2021, 13(3), 4211-4219.

95. X.Y. Gao, Y.H. Li, H. Li, J. Dong, Z.P. Huang*, C. Zhang*, Electrochemical modulation enhancing the saturation absorption of polyaniline, Optical Materials, 2021, 118, 111272.

94. Cuncai Lv, Qianpeng Yang, Shichen Xu, Ling Yuan, Zhipeng Huang*, Zhouhong Ren, Jun Luo, Shufang Wang, Chi Zhang*, The in situ removal of surface molybdenum oxide for making binder-free porous Mo1.98C1.02 film a more efficient electrocatalyst for alkaline rather than acidic hydrogen production, Sustainable Energy & Fuels, 2021, 5(3), 3373-3381.

 

93. C. Wu, X.X. Jiang, L. Lin, W.Y. Dan, Z.S. Lin, Z.P. Huang, M.G. Humphrey, C. Zhang*, Blue Strong SHG Responses in a Beryllium-Free Deep-UV-Transparent Hydroxyborate via Covalent Bond Modification, Angewandte Chemie International Edition, 2021, 60(52), 27151-27157

92. C. Wu, X.X. Jiang, Z.J. Wang, H.Y. Sha, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C.Zhang*, UV Solar-Blind-Region Phase-Matchable Optical Nonlinearity and Anisotropy in a pi-Conjugated Cation-Containing Phosphate, Angewandte Chemie International Edition, 2021, 60(27), 14806-14810.

91. C. Wu, T.H. Wu, X.X. Jiang, Z.J. Wang, H.Y. Sha, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C.Zhang*, Large Second-Harmonic Response and Giant Birefringence of CeF2(SO4) Induced by Highly Polarizable Polyhedra, Journal of the American Chemical Society, 2021, 143, 11, 4138-4142.

90. C. Wu, X.X Jiang, L. Lin, T.H. Wu, Z.S. Lin, Z.P. Huang, M.G. Humphrey, C. Zhang*, In situ hydrothermal synthesis of polar second-order nonlinear optical selenate Na5(SeO4)(HSeO4)3(H2O)2, Inorganic Chemistry, Frontiers, 2021, 8, 3141-3148.

89. C. Wu, L. Lin, T.H. Wu, Z.P. Huang*, C. Zhang*, Deep-ultraviolet transparent alkali metal-rare earth metal sulfate NaY(SO4)2·H2O as a nonlinear optical crystal: synthesis and characterization, CrystEngComm, 2021, 23, 2945-2951.

88. Q.K. Xu, X.X. Jiang, C. Wu, L. Lin, Z.P. Huang, Z.S. Lin, M.G. Humphrey, C. Zhang*, Rb3In(SO4)3: a defluorinated mixed main-group metal sulfate for ultraviolet transparent nonlinear optical materials with a large optical band gap dagger, Journal of Materials Chemistry C, 2021, 9, 5124-5131.

87. G. Yang, X.X. Jiang, C. Wu, Z.S. Lin, Z.P. Huang, M.G. Humphrey, C. Zhang, Facile syntheses of silver thioantimonates exhibiting second-harmonic generation responses and large birefringence, Dalton Transactions, 2021, 50, 3568-3576.

86. Y.W. Lu, X.X. Jiang, C. Wu, L. Lin, Z.P. Huang, Z.S. Lin, M.G. Humphrey, C. Zhang*, Molecular Engineering toward an Enlarged Optical Band Gap in a Bismuth Sulfate via Homovalent Cation Substitution, Inorganic Chemistry, 2021, 60(8), 5851-5859

85. C. Wu, L. Lin, T.H. Wu, Z.P. Huang, C. Zhang*, Second-order nonlinear optical property of the ultraviolet transparent alkali metal-rare earth metal carbonate Na3Y(CO3)3·3H2O, Journal of Solid State Chemistry, 2021, 298, 122095.

84. L. Lin, X.X. Jiang, C. Wu, Z.S. Lin, Z.P. Huang*, M. G. Humphrey, C. Zhang*, First chiral fluorinated lead vanadate selenite Pb2(V2O4F)(VO2)(SeO3)3 with five asymmetric motifs and large optical properties, Dalton Transactions, 2021, 50, 7238

83. C. Wu, L. Lin, T.H., Wu, W.Y., Dan, Z.P. Huang*, C. Zhang*, Solvothermal Syntheses of Three-Dimensional Open-Framework Thioantimonates Displaying Nonlinear Optical Responses, Crystal Growth & Design, 2021, 21(8), 4757-4764.

82. Yilei Hu, Xingxing Jiang, Chao Wu, Zhipeng Huang*, Zheshuai Lin, Mark G. Humphrey, Chi Zhang*, A2MoO2F3(IO2F2) (A = Rb, Cs): Strong Nonlinear Optical Responses and Enlarged Band Gaps through Fluorine Incorporation, Chemistry of Materials, 2021, 33(14), 5700-5708

81. Chao Wu, Xingxing Jiang, Lin Lin, Yilei Hu, Tianhui Wu, Zheshuai Lin, Zhipeng Huang*, Mark G. Humphrey, Chi Zhang*, A Congruent-Melting Mid-Infrared Nonlinear Optical Vanadate Exhibiting Strong Second-Harmonic Generation, Angewandte Chemie International Edition, 2021, 60(41), 22447-22453.

80. Lin Lin, Xingxing Jiang, Chao Wu, Zheshuai Lin, Zhipeng Huang*, Mark G. Humphrey, Chi Zhang*, CsZrF4(IO3): The First Polar Zirconium Iodate with cis-[ZrO2F6] Polyhedra Inducing Optimized Balance of Large Band Gap and Second Harmonic Generation, Chemistry of Materials, 2021, 33(14), 5555-5562.

79. Yilei Hu, Chao Wu, Xingxing Jiang, Zujian Wang, Zhipeng Huang, Zheshuai Lin, Xifa Long, Mark G. Humphrey, Chi Zhang, Giant Second-Harmonic Generation Response and Large Band Gap in the Partially Fluorinated Mid-Infrared Oxide RbTeMo2O8F, Journal of the American Chemical Society, 2021, 143(32), 12455-12459

78. Tianhui Wu, Xingxing Jiang, Yiran Zhang, Zujian Wang, Hongyuan Sha, Chao Wu, Zheshuai Lin, Zhipeng Huang, Xingfa Long, Mark G Humphrey, Chi Zhang, From CeF2(SO4)·H2O to Ce(IO3)2(SO4): Defluorinated Homovalent Substitution for Strong Second-Harmonic-Generation Effect and Sufficient Birefringence, Chemistry of Materials, 2021, 33(23), 9317-9325.

77. Tianhui Wu, Xingxing Jiang, Chao Wu, Hongyuan Sha, Zujian Wang, Zheshuai Lin, Zhipeng Huang, Xingfa Long, Mark G. Humphrey, Chi Zhang, From Ce(IO3)4 to CeF2(IO3)2: fluorinated homovalent substitution simultaneously enhances SHG response and bandgap for mid-infrared nonlinear optics, Journal of Materials Chemistry C, 2021, 9(28), 8987-8993.

 

2020 (66-76)

76. C. C. Lv, R. N. Wang, X. B. Wang, L. J. Gao, S. F. Wang*, X. K. Ning, Y. G. Li, Z. P. Huang*, C. Zhang*, Triple Functions of Ni(OH)2 on the Surface of WN Nanowires Remarkably Promoting Electrocatalytic Activity in Full Water splitting, ACS Catalysis, 2020, 10, 13323–13333.

75.S. M. Thalluri, L. C. Bai, C. C. Lv, Z. P. Huang*, X. L. Hu*, L. F. Liu*, Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting, Advanced Science, 2020, 7, 1902102 .

74.Y. H. Sun, H. Li, R. P. Hou, M. J.  Diao, Y. Liang, Z. P. Huang*, M. G.   Humphrey, C. Zhang*, Realizing Saturable Absorption and Reverse Saturable Absorption in a PEDOT:PSS Film via Electrical Modulation, ACS Applied Materials & Interfaces, 2020, 12(43), 48982-48990.

73.M. J. Diao, H. Li, R. P. Hou, Y. Liang, J. Wang, Z. S. Luo, Z. P. Huang*, C. Zhang*, Vertical Heterostructure of SnS-MoS2 Synthesized by Sulfur-Preloaded Chemical Vapor Deposition, ACS Applied Materials & Interfaces, 2020, 12, 7423-7431.

 

72. L. Lin, X.X. Jiang, C. Wu*, L.H. Li, Z.S. Lin, Z.P. Huang, M.G. Humphrey, C. Zhang*, Ba(MoO2F)2(XO3)2 (X = Se, Te): First Cases of Noncentrosymmetric Fluorinated Molybdenum-Oxide Selenite/Tellurite Through Unary Substitution for Enlarging Band Gap and Second Harmonic Generation, ACS Applied Materials & Interfaces, 2020, 12, 49812–49821.

71. C. Wu, X.X. Jiang, Z.J. Wang, L. Lin, Z.S. Lin, Z.P. Huang, X.F. Long, M.G. Humphrey, C. Zhang*, Giant Optical Anisotropy in the UV-Transparent 2D Nonlinear Optical Material Sc(IO3)2(NO3), Angewandte Chemie International Edition, 2020, 61, 3464-3469.

70.C. Wu, L. H. Li, L. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang*, Gd(NO3)(Se2O5) 3H2O: a nitrate-selenite nonlinear optical material with a short ultraviolet cutoff edge, Dalton Transactions, 2020, 49, 3253-3259.

69.C. Wu, L. H. Li, L. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang*, Enhancement of Second-Order Optical Nonlinearity in a Lutetium Selenite by Monodentate Anion Partial Substitution, Chemistry of Materials, 2020, 32, 3043-3053.

68.C. Wu, X. X. Jiang, L. Lin*, Z. S. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang*, AGa3F6(SeO3)2 (A = Rb, Cs): A New Type of Phase-Matchable Hexagonal Tungsten Oxide Material with Strong Second-Harmonic Generation Responses, Chemistry of Materials, 2020, 32, 6906-6915.

67.T. Y. Wang, C. Wu*, L. Lin, Z. P. Huang, M. G. Humphrey, C. Zhang*, Synthesis, crystal structures and optical properties of open-framework gallium phosphates: NaGa3F4(PO4)2(H2O)2 and AGa2P2O7(OH)3H2O (A = K, Rb), Journal of Solid State Chemistry, 2020, 288, 121412.

66.L. Lin, L. H. Li, C. Wu, Z. P. Huang, M. G. Humphrey, C. Zhang*, Incorporating rare-earth cations with moderate electropositivity into iodates for the optimized second-order nonlinear optical performance, Inorganic Chemistry Frontiers, 2020, 7, 2736-2746.

 

2019 (59-65)

65.S. C. Xu, C. C. Lv, T. He, Z. P. Huang*, C. Zhang*, Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction, Journal of Materials Chemistry A, 2019, 7, 7526-7532.

64.C. C. Lv, S. C. Xu, Q. P. Yang, Z. P. Huang*, C. Zhang*, Promoting electrocatalytic activity of cobalt cyclotetraphosphate in full water splitting by titanium-oxide-accelerated surface reconstruction, Journal of Materials Chemistry A, 2019, 7, 12457-12467.

63.Y. Liang, H. Li, R. P. Hou, J. Wang, K. Wang, M. K. Ge, J. Luo, Z. P. Huang*, C. Zhang*, Vertical Stacking of Copper Sulfide Nanoparticles and Molybdenum Sulfide Nanosheets for Enhanced Nonlinear Absorption, ACS Applied Materials & Interfaces, 2019, 11, 35835-35844.

62.G. Fang, J. H. Cai, Z. P. Huang*, C. Zhang, One-step electrodeposition of cerium-doped nickel hydroxide nanosheets for effective oxygen generation, RSC Advances, 2019, 9, 17891-17896.

61.J. H. Cai, J. G. Huang, S. C. Xu, L. Yuan, X. R. Huang, Z. P. Huang*, C. Zhang, Nickel iron carbonate hydroxide hydrate decorated with CeOx for highly efficient oxygen evolution reaction, Journal of Solid State Electrochemistry, 2019, 23, 3449-3458.

60H. Li, Z. P. Huang, Y. F. Xie, X. Chen, J. Wang, L. Zhang*, C. Zhang, Ultrafast nonlinear optical response of molybdenum nano-film in wide wavelength range, Optical Materials, 2019, 95, 109244.

 

59.C. Wu, L. Lin, X. X. Jiang, Z. S. Lin, Z. P. Huang, M. G. Humphrey, P. S. Halasyamani, C. Zhang*, K5(W3O9F4)(IO3): An Efficient Mid-Infrared Nonlinear Optical Compound with High Laser Damage Threshold, Chemistry of Materials, 2019, 31, 10100-10108.

 

2018 (53-58)

58.Q. P. Yang, C. C. Lv, Z. P. Huang*, C. Zhang*, Amorphous film of ternary Ni-Co-P alloy on Ni foam for efficient hydrogen evolution by electroless deposition, International Journal of Hydrogen Energy, 2018, 43, 7872-7880.

57.C. C. Lv, Z. P. Huang*, Q. P. Yang, C. Zhang*, Nanocomposite of MoO2 and MoC loaded on porous carbon as an efficient electrocatalyst for hydrogen evolution reaction, Inorganic Chemistry Frontiers, 2018, 5, 446-453.

56.C. C. Lv, Z. P. Huang*, Q. P. Yang, C. Zhang*, Few-layer tiny nanoflakes of molybdenum sulfide loaded on porous carbon as an efficient electrocatalyst for hydrogen generation, Journal of Alloys and Compounds, 2018, 750, 927-934.

55.C. C. Lv, Z. P. Huang*, Q. P. Yang, C. Zhang*, W-Doped MoO2/MoC Hybrids Encapsulated by P-Doped Carbon Shells for Enhanced Electrocatalytic Hydrogen Evolution, Energy Technology, 2018, 6, 1707-1714.

54.H. Li, S. C. Xu, Z. P. Huang*, J. W. Huang, J. Wang, L. Zhang, C. Zhang*, Facet- dependent nonlinear optical properties of bismuth oxychloride single- crystal nanosheets, Journal of Materials Chemistry C, 2018, 6, 8709-8716.

53.L. L. Ji, C. C. Lv, Z. F. Chen*, Z. P. Huang*, C. Zhang*, Nickel-Based (Photo)Electrocatalysts for Hydrogen Production, Advanced Materials, 2018, 30, 1705653.

 

2017 (49-52)

52.H. Xia, Z. P. Huang*, C. C. Lv, C. Zhang*, A Self-Supported Porous Hierarchical Core Shell Nanostructure of Cobalt Oxide for Efficient Oxygen Evolution Reaction, ACS Catalysis, 2017, 7, 8205-8213.

51.C. C. Lv, Z. P. Huang*, Q. P. Yang, G. F. Wei, Z. F. Chen, M. G. Humphrey, C. Zhang*, Ultrafast synthesis of molybdenum carbide nanoparticles for efficient hydrogen generation, Journal of Materials Chemistry A, 2017, 5, 22805-22812.

50.J. H. Hao, W. S. Yang, Z. Peng, C. Zhang*, Z. P. Huang*, W. D. Shi*, A Nitrogen Doping Method for CoS2 Electrocatalysts with Enhanced Water Oxidation Performance, ACS Catalysis, 2017, 7, 4214-4220.

 

49.J. H. Hao, W. S. Yang, J. W. Hou, B. D. Mao, Z. P. Huang, W. D. Shi*, Nitrogen doped NiS2 nanoarrays with enhanced electrocatalytic activity for water oxidation, Journal of Materials Chemistry A, 2017, 5, 17811-17816.

 

2016 (38-48)

48.Y. X. Zhao, C. C. Lv, Q. L. Huang, Z. P. Huang*, C. Zhang*, Self-supported tungsten/tungsten dioxide nanowires array as an efficient electrocatalyst in the hydrogen evolution reaction, RSC Advances, 2016, 6, 89815-89820.

47.H. Xia, Z. Peng*, L. V. Cuncai, Y. X. Zhao, J. H. Hao, Z. P. Huang*, Self-supported porous Cobalt Oxide Nanowires with enhanced Electrocatalytic performance toward Oxygen evolution reaction, Journal of Chemical Sciences, 2016, 128, 1879-1885.

46.J. Wang, H. Xia, Z. Peng, C. C. Lv, L. H. Jin, Y. X. Zhao, Z. P. Huang*, C. Zhang*, Graphene Porous Foam Loaded with Molybdenum Carbide Nanoparticulate Electrocatalyst for Effective Hydrogen Generation, Chemsuschem, 2016, 9, 855-862.

45.C. C. Lv, Q. P. Yang, Q. L. Huang, Z. P. Huang*, H. Xia, C. Zhang*, Phosphorus doped single wall carbon nanotubes loaded with nanoparticles of iron phosphide and iron carbide for efficient hydrogen evolution, Journal of Materials Chemistry A, 2016, 4, 13336-13343.

44.C. C. Lv, J. Wang, Q. L. Huang, Q. P. Yang, Z. P. Huang*, C. Zhang*, Facile synthesis of hollow carbon microspheres embedded with molybdenum carbide nanoparticles as an efficient electrocatalyst for hydrogen generation, RSC Advances, 2016, 6, 75870-75874.

43.C. C. Lv, Z. Peng, Y. X. Zhao, Z. P. Huang*, C. Zhang*, The hierarchical nanowires array of iron phosphide integrated on a carbon fiber paper as an effective electrocatalyst for hydrogen generation, Journal of Materials Chemistry A, 2016, 4, 1454-1460.

42.L. H. Jin, H. Xia, Z. P. Huang*, C. C. Lv, J. Wang, M. G. Humphrey, C. Zhang*, Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution, Journal of Materials Chemistry A, 2016, 4, 10925-10932.

41.J. H. Hao, W. S. Yang, Z. P. Huang*, C. Zhang*, Superhydrophilic and Superaerophobic Copper Phosphide Microsheets for Efficient Electrocatalytic Hydrogen and Oxygen Evolution, Advanced Materials Interfaces, 2016, 3, 1600236.

 

40. A. J. Wang, W. Yu, Z. P. Huang, F. Zhou, J. B. Song, Y. L. Song, L. L. Long, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. D. Shao, C. Zhang*, Covalent functionalization of reduced graphene oxide with porphyrin by means of diazonium chemistry for nonlinear optical performance, Scientific Reports, 2016, 6, 23325.

39.A. J. Wang, Y. Wang, W. Yu, Z. P. Huang, Y. Fang, L. L. Long, Y. L. Song, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. D. Shao, C. Zhang*, TiO2-multi-walled carbon nanotube nanocomposites: hydrothermal synthesis and temporally-dependent optical properties, RSC Advances, 2016, 6, 20120-20127.

38.A. J. Wang, J. B. Song, Z. P. Huang, Y. L. Song, W. Yu, H. L. Dong, W. P. Hu, M. P. Cifuentes, M. G. Humphrey, L. Zhang, J. D. Shao, C. Zhang*, Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance, Nano Research, 2016, 9, 458-472.

 

Before 2016 (1~37)

37.C. C. Lv, Z. B. Chen, Z. Z. Chen, B. Zhang, Y. Qin, Z. P. Huang*, C. Zhang*, Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production, Journal of Materials Chemistry A, 2015, 3, 17669-17675.

36.Z. P. Huang*, C. C. Lv, Z. Z. Chen, Z. B. Chen, F. Tian, C. Zhang*, One-pot synthesis of diiron phosphide/nitrogen-doped graphene nanocomposite for effective hydrogen generation, Nano Energy, 2015, 12, 666-674.

35.Z. P. Huang*, C. F. Wang, Z. B. Chen, H. Meng, C. C. Lv, Z. Z. Chen, R. Q. Han, C. Zhang*, Tungsten Sulfide Enhancing Solar-Driven Hydrogen Production from Silicon Nanowires, ACS Applied Materials & Interfaces, 2014, 6, 10408-10414.

34.Z. P. Huang*, M. Y. Li, D. Jia, P. Zhong, F. Tian, Z. Z. Chen, M. G. Humphrey, C. Zhang*, A facile approach to hetero-nanorods of Ag2Se-MSe (M = Cd, Zn) with enhanced third-order optical nonlinearity, Journal of Materials Chemistry C, 2014, 2, 1418-1426.

33. H. Han, Z.P. Huang*, W. Lee*, Metal-assisted chemical etching of silicon and nanotechnology applications, Nano Today, 2014, 9(3), 271-304.

32.Z. P. Huang*, Z. Z. Chen, Z. B. Chen, C. C. Lv, M. G. Humphrey, C. Zhang*, Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction, Nano Energy, 2014, 9, 373-382.

31.Z. P. Huang*, Z. B. Chen, Z. Z. Chen, C. C. Lv, H. Meng, C. Zhang*, Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis, ACS Nano, 2014, 8, 8121-8129.

30.Z. P. Huang*, P. Zhong, C. F. Wang, X. X. Zhang, C. Zhang*, Silicon Nanowires/Reduced Graphene Oxide Composites for Enhanced Photoelectrochemical Properties, ACS Applied Materials & Interfaces, 2013, 5, 1961-1966.

29.Z. P. Huang*, C. F. Wang, L. Pan, F. Tian, X. X. Zhang, C. Zhang*, Enhanced photoelectrochemical hydrogen production using silicon nanowires@MoS3, Nano Energy, 2013, 2, 1337-1346.

28.Z. P. Huang*, L. Pan, P. Zhong, M. Y. Li, F. Tian, C. Zhang*, Facile Low-Temperature Synthesis of Ultralong Monodisperse ZnSe Quantum Wires with the Assistance of Ag2S, Chemistry-a European Journal, 2013, 19, 1732-1739.

27.J. L. Wang, C. M. Yang, Z. P. Huang, M. G. Humphrey, D. Jia, T. T. You, K. M. Chen, Q. Yang, C. Zhang*, Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires, Journal of Materials Chemistry, 2012, 22, 10009-10014.

26.F. Tian*, Z. P. Huang, L. Whitmore, Fabrication and magnetic properties of Ni nanowire arrays with ultrahigh axial squareness, Physical Chemistry Chemical Physics, 2012, 14, 8537-8541.

25.M. Y. Li, R. X. Wang, P. Zhong, X. K. Li, Z. P. Huang*, C. Zhang, Ag-TiO2-Ag core-shell-satellite nanowires: Facile synthesis and enhanced photocatalytic activities, Materials Letters, 2012, 80, 138-140.

24.J. H. Li, S. C. Meng, J. F. Zhang, Y. L. Song, Z. P. Huang, H. J. Zhao, H. Y. Wei, W. J. Huang, M. P. Cifuentes, M. G. Humphrey, C. Zhang*, Solvent-induced syntheses of 2D/3D [AgSCN]n-based supramolecular isomers with unusual topologies: structural, theoretical and nonlinear optical studies, Crystengcomm, 2012, 14, 2787-2796.

23.Z. P. Huang*, P. Zhong, M. Y. Li, F. Tian, C. Zhang*, A facile one-step approach to obtaining uniform matchstick-like Ag2S-CdS nanoheterostructures, Nanotechnology, 2012, 23, 335604.

22.Z. P. Huang*, R. X. Wang, D. Jia, L. Maoying, M. G. Humphrey, C. Zhang*, Low-Cost, Large-Scale, and Facile Production of Si Nanowires Exhibiting Enhanced Third-Order Optical Nonlinearity, ACS Applied Materials & Interfaces, 2012, 4, 1553-1559.

21.N. Geyer*, B. Fuhrmann, Z. P. Huang, J. de Boor, H. S. Leipner, P. Werner, Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films As Catalysts, Journal of Physical Chemistry C, 2012, 116, 13446-13451.

20.D. A. Wang, L. F. Liu*, Y. Kim*, Z. P. Huang, D. Pantel, D. Hesse, M. Alexe, Fabrication and characterization of extended arrays of Ag2S/Ag nanodot resistive switches, Applied Physics Letters, 2011, 98, 234019.

19.L. F. Liu*, Z. P. Huang, D. A. Wang, R. Scholz, E. Pippel, The fabrication of nanoporous Pt-based multimetallic alloy nanowires and their improved electrochemical durability, Nanotechnology, 2011, 22, 105604.

18.Z. P. Huang*, L. F. Liu, N. Geyer, Quasi-radial growth of metal tube on Si nanowires template, Nanoscale Research Letters, 2011, 6, 165.

17.Z. P. Huang*, N. Geyer*, P. Werner, J. de Boor, U. Gosele, Metal-Assisted Chemical Etching of Silicon: A Review, Advanced Materials, 2011, 23, 285-308.

16.Y. Yang*, R. B. Yang, H. J. Fan, R. Scholz, Z. P. Huang, A. Berger, Y. Qin, M. Knez, U. Gosele, Diffusion-Facilitated Fabrication of Gold-Decorated Zn2SiO4 Nanotubes by a One-Step Solid-State Reaction, Angewandte Chemie-International Edition, 2010, 49, 1442-1446.

15.Z. P. Huang*, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, U. Gosele*, Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon, Journal of Physical Chemistry C, 2010, 114, 10683-10690.

14.Z. P. Huang*, N. Geyer, L. F. Liu, M. Y. Li, P. Zhong, Metal-assisted electrochemical etching of silicon, Nanotechnology, 2010, 21, 465301.

13.J. Zhao, Z. P. Huang, J. Zhu*, A luminescence enhancement approach through Si/O nanostructure, Science in China Series E-Technological Sciences, 2009, 52, 1171-1175.

12.Z. P. Huang* T. Shimizu, S. Senz, Z. Zhang, X. X. Zhang, W. Lee, N. Geyer, U. Gosele* Ordered Arrays of Vertically Aligned 110 Silicon Nanowires by Suppressing the Crystallographically Preferred Etching Directions, Nano Letters, 2009, 9, 2519-2525.

11.N. Geyer# Z. P. Huang# B. Fuhrmann, S. Grimm, M. Reiche, T. K. Nguyen-Duc, J. de Boor, H. S. Leipner, P. Werner, U. Gosele* Sub-20 nm Si/Ge Superlattice Nanowires by Metal-Assisted Etching, Nano Letters, 2009, 9, 3106-3110.

10.Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, U. Gosele* Extended arrays of vertically aligned sub-10 nm diameter 100 Si nanowires by metal-assisted chemical etching, Nano Letters, 2008, 8, 3046-3051.

9.J. Luo, J. Zhu* Z. P. Huang, L. Zhang, Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterojunctions containing Schottky contacts, Applied Physics Letters, 2007, 90, 033114

8.Z. P. Huang, J. Zhu*, Growth and enhanced emission of silicon-germanium hemisphere shell arrays, Applied Physics Letters, 2007, 91, 013108.

7.Z. P. Huang, H. Fang, J. Zhu* Fabrication of silicon nanowire arrays with controlled diameter, length, and density, Advanced Materials, 2007, 19, 744-748.

6.J. Luo, Y. J. Xing, J. Zhu* D. P. Yu, Y. G. Zhao, L. Zhang, H. Fang, Z. P. Huang, J. Xu, Structure and electrical properties of Ni nanowire/multiwalled-carbon nanotube/amorphous carbon nanotube fleterojunctions, Advanced Functional Materials, 2006, 16, 1081-1085.

5.Z. P. Huang, Y. Wu, H. Fang, N. Deng, T. L. Ren, J. Zhu* Large-scale Si1-xGex quantum dot arrays fabricated by templated catalytic etching, Nanotechnology, 2006, 17, 1476-1480.

4.W. X. Sun, Z. P. Huang, L. Zhang, J. Zhu* Studies on fluorescent properties of multi-walled carbon nanotubes before and after concentrated nitric acid treatment, Spectroscopy and Spectral Analysis, 2005, 25, 10-12.

3.K. Q. Peng, Z. P. Huang, J. Zhu* Fabrication of large-area silicon nanowire p-n junction diode arrays, Advanced Materials, 2004, 16, 73-76.

2.J. Luo, Z. P. Huang, Y. G. Zhao, L. Zhang, J. Zhu* Arrays of heterojunctions of Ag nanowires and amorphous cairbon nanotubes, Advanced Materials, 2004, 16, 1512-1515.

1.W. X. Sun, Z. P. Huang, L. Zhang, J. Zhu* Luminescence from multi-walled carbon nanotubes and the Eu(III)/multi-walled carbon nanotube composite, Carbon, 2003, 41, 1685-1687.

 


展开更多

学校介绍


  同济大学是国家教育部直属重点大学,也是首批被批准成立研究生院、并被列为国家“ 211 工程”和“面向 21 世纪教育振兴行动计划”(985 工程)与上海市重点建设的高水平研究型大学之一。同济大学创建于 1907 年,现已成为拥有理、工、医、文、法、经(济)、管(理)、哲、教(育)9 大门类的研究型、综合性、多功能的现代大学。

  同济大学现设有各类专业学院 22 个,还建有继续教育学院、 职业技术教育学院等,设有经中德政府批准合作培养硕士研究生的中德学院、中德工程学院,与法国巴黎高科大学集团合作举办的中法工程和管理学院等。目前学校共有 81 个本科专业、 140 个硕士点、 7 个硕士专业学位授权点、博士授权点 58 个、 13 个博士后流动站,学校拥有国家级重点学校 10 个。各类学生 5 万多人,教学科研人员 4200 多人,其中有中科院院士 6 人、工程院院士 7 人,具有各类高级职称者 1900 多人,拥有长江学者特聘教授岗位 22 个。作为国家重要的科研中心之一,学校设有国家、省部级重点实验室和工程研究中心等国家科研基地 16 个。学校还设有附属医院和 2 所附属学校。

  近年来同济大学正在探索并逐步形成有自己特色的现代教育思想和办学理念。以本科教育为立校之本,以研究生教育为强校之路。确立“知识、能力、人格”三位一体的全面素质教育和复合型人才培养模式。坚持“人才培养、科学研究、社会服务、国际交往”四大办学功能协调发展,努力强化服务社会的功能,实现大学功能中心化。以国家科技发展战略和地区经济重点需求为指针,促进传统学科高新化、新兴学科强势化、学科交叉集约化。与产业链紧密结合,形成优势学科和相对弱势学科互融共进的学科链和学科群,构建综合性大学的学科体系,其中桥梁工程、海洋地质、城市规划、结构工程、道路交通、车辆工程、环境工程等学科在全国居领先地位。在为国家经济建设和社会发展做贡献的过程中,争取更多的“单项冠军”,提升学校的学术地位和社会声誉。学校正努力建设文理交融、医工结合、科技教育与人文教育协调发展的综合性、研究型、国际知名高水平大学。

  同济大学已建成的校园占地面积 3700 多亩,分五个校区,四平路校区位于上海市四平路,沪西校区位于上海市真南路,沪北校区位于上海市共和新路,沪东校区位于上海市武东路。正在建设中的嘉定校区位于安亭上海国际汽车城内。

  同济大学研究生院简介

  同济大学一贯重视研究生教育,早在 20 世纪 50 年代初即在部分专业招收培养研究生。 1978 年学校恢复招收硕士研究生, 1981 年起招收博士研究生,同年被国务院学位委员会批准为首批有权授予博士、硕士学位的单位。 1986 年经国务院批准试办研究生院, 1996 年经评估正式成立研究生院,成为我国培养高层次专门人才的重要基地之一。同济大学现有一级学科博士学位授权点 12 个,二级学科博士学位授权点 68 个(含自主设置 10 个二级学科博士点),硕士学位授权点 147 个(含自主设置 7 个二级学科硕士点),分属哲学、经济学、法学、教育学、文学、理学、工学、医学、管理学等 9 个学科门类。其中土木工程、建筑学、交通运输工程、海洋科学、环境科学与工程、力学、材料科学与工程等学科处在全国优势和领先地位,机电、管理、理学等学科近年有了长足进展。我校还设有 13 个博士后科研流动站。近些年来,为了适应我国经济建设和社会发展的需要,学校还十分注重培养不同类型、多个层次、多种规格的高层次专门人才。学校既设科学学位,又设工商管理、行政管理、建筑学、临床医学、工程硕士(含 21 个工程领域)、口腔医学等多种专业学位;既培养学术型、研究型研究生,又培养应用型、复合型专业学位研究生;既有在校全日制攻读学位模式,又有在职人员攻读专业硕士学位或以同等学力申请硕士学位、中职教师在职攻读硕士学位、高校教师在职攻读硕士学位模式。此外,还面向社会举办多种专业研究生课程进修班等,充分发挥了我校学科优势和特色,由此形成了多渠道、多规格、多层次的办学模式,取得了良好的社会效益。

  同济大学研究生院是校长领导下具有相对独立职能的研究生教学和行政管理机构,下设招生办公室、管理处、培养处、学位办公室、学科建设办公室和行政办公室。同时,学校党委还专门设立了研究生工作部。学校设有校学位评定委员会,各学院有学位评定分委员会,并设立了各学科、专业委员会,配有学位管理工作秘书、教务员、班主任、研究生教学秘书等教辅人员。研究生院曾多次被评为全国和上海市学位与研究生教育管理工作先进集体。

  二十多年来,同济大学始终把全面提高培养质量作为研究生教育改革的指导思想,在严格质量管理方面采取了一系列切实有效的措施,取得了较好效果。在连续多年全国百篇优秀博士学位论文评选中,有 7 篇入选。同济大学为国家培养了一大批高素质的高级专门人才,至今已授予博士学位 1311 人,硕士学位近 9504 人,其中有相当一部分已成为我国社会主义现代化建设的重要骨干力量。至 2004 年 9 月,在校博士、硕士研究生约达 11000 多人,专业学位硕士生约 2700 人。根据本校研究生教育发展规划, 2006 年计划招收博士生、硕士生(含专业学位研究生)超过 4000 名。同济大学正在为我国经济建设和社会发展输送高层次人才做出更大的贡献。

展开更多

同济大学硕士研究生学费及奖助政策

收费和奖励

1) 按照国务院常务会议精神,从 2014 年秋季学期起,向所有纳入国家招生计划的新入学研究生收取学费。其中:工程管理硕士(125600)、MBA[微博](125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程领域工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)专业学位研究生的学费标准另行公布,其它硕士研究生学费不超过 8000 元/学年。

2) 对非定向就业学术型研究生和非定向就业专业学位硕士研究生,同济大学有完善的奖励体系(工程管理硕士(125600)、MBA(125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)的奖励由培养单位另行制订)。对亍纳入奖励体系的非定向就业学术型硕士生和非定向就业专业学位硕士生在入学时全部都可以获得 8000 元/学年的全额学业奖学金,该奖学金用以抵充学费。对纳入奖励体系的硕士研究生还可获得不少亍 600 元/月的励学金,每年发放10 个月。另外,纳入奖励体系的非定向就业研究生都可以申请励教和励管的岗位,获得额外的资励。所有非定向就业硕士研究生在学期间纳入上海市城镇居民基本医疗保险,可申请办理国家励学贷款,可参加有关专项奖学金评定。

3)工商管理硕士在职班、金融硕士在职班、公共管理硕士、工程管理硕士、会计硕士、护理硕士、教育硕士、汉语国际教育硕士、人文学院的艺术硕士采取在职学习方式,考生录取后,人事关系不人事档案不转入学校,在读期间不参加上海市大学生医疗保障,学校不安排住宿,毕业时不纳入就业计划。

展开更多
点赞
意向报名 前往导师主页