汽车学院-李冰导师介绍

更新于 2023-09-05 导师主页
李冰 硕,博士生导师
汽车学院
动力机械及工程 ,能源动力
能源材料、燃料电池技术及车用能源系统
libing210@tongji.edu.cn

2011年毕业于同济大学汽车学院,获工学博士学位,同年10月,进入同济大学机械工程博士后流动站从事两年的博士后研究工作,2013年11月出站后进入汽车学院从事教学科研工作,历任助理教授、副研究员和研究员。目前主要研究方向为能源材料的开发与应用。工作以来,作为负责人或核心骨干完成包括国家重点研发计划、国家863主题项目、国际合作项目、国家自然科学基金项目、中央高校基本科研业务费专项资金项目在内的纵向课题10余项,产学研合作项目1项。至今已在国内外专业学术期刊累计发表科技论文近80篇


展开更多

科研项目

教学情况:
承担车用新能源方向本科专业实验课《车用新能源技术综合实验》和博士专业课《燃料电池技术与科学前沿》的教学任务;承担研究生学位论文指导工作,已毕业研究生8名,在读博士研究生8人,硕士研究生8名。
代表科研项目:
1) 国家自然科学基金面上项目,52176198,燃料电池铂基催化剂浆料微团簇构筑过程及稳定机理研究,2022/01-2025/12,58万元,在研,主持;
2) 国家自然科学基金面上项目,21676204,燃料电池铂基八面体合金催化剂的微观结构调控及电池性能研究,2017/01-2020/12,64万元,已结题,主持
3) 国家重点研发计划,2020YFB0106601,燃料电池堆设计需求及性能衰减过程机理研究 (课题),2020/12-2023/11,910万元,在研,主持;
4) 国家重点研发计划,2018YFB1502703,测试系统多维度在线监测、健康诊断及寿命预测模块开发(课题),2019/04-2022/03,219万元,在研,主持;
5) 国家重点研发计划,2021YFB4001801,多场景、多类型氢能动力系统特征工况及需求分析(子课题),2021/12-2025/11,500万元,在研,主持;
6) 国家重点研发计划,2018YFB0106503,大功率燃料电池电堆开发(子课题),2018/07-2021/06,450.25万元,在研,主持;
7) 国家自然科学基金青年项目,21206128,燃料电池阴极Pt-Fe/C纳米线立体网络电催化剂研究,2013/01-2015/12,25万元,已结题,主持;
8) 未势能源,2022,膜电极关键技术开发,600万,在研,主持;
9) 中车重大专项,TJ-CRRC-2017-PM2,长寿命高活性MEA开发,2017/10-2021/08,240万元,在研,主持;
10) 中央高校交叉学科,22120180091,锂离子电容器多孔碳表面调控与负极匹配的性能强化机制研究,2018/01-2019/12,20万,在研,主持;
11) 国家博士后管理办公室,2012M510115,燃料电池Pt-Ir纳米线立体网络结构阳极催化剂研究,2012/06-2013/10,8万元,已结题,主持;
12) 国家科技部科技支撑项目,2015BAG06B00,面向产业化的燃料电池动力系统,2015/01-2017/12,888万元,在研,参加;
13) 国家科技部863项目,2014AA052501,压缩储供一体化高密度氢储系统开发,2014/01-2016/12,100万元,已结题,参加;
14) 国家科技部863项目,2012AA053301,基于风-光互补发电耦合电解制氢的站制氢技术,2013/01-2015/12,375万元,已结题,参加;
15) 国家科技部863项目,2012AA053305,70MPa加氢站系统集成、示范与安全评价技术,2013/01-2015/12,555万元,已结题,参加;
16) 国家科技部重大仪器项目,2012YQ150256,燃料电池汽车动力系统动态性能综合测试仪器开发及应用,2012/10-2016/08,233万元,已结题,参加。


展开更多

研究成果

代表学术论文:
1) 第一.Nitrogen-doped activated carbon for a high energy hybrid supercapacitor, Energy Environ. Sci., 2016, 9: 102-106. (JCR Q1, IF=39.714)(高被引论文);
2) 第一.Electrode materials, electrolytes and challenges in nonaqueous lithium-ion capacitors, Advanced Materials, 2018, 30(17): e1705670. (JCR Q1, IF=32.086);
3) 第一.Activated Carbon from Biomass Transfer for High Energy Density lithium-Ion Supercapacitors, Adv. Energy Mat., 2016, 6(18): 1600802. DOI: 10.1002/aenm.201600802. (JCR Q1, IF=29.698);
4) 通讯. The Controllable Design of Catalyst Inks to Enhance PEMFC Performance: A Review. Electrochem. Energ. Rev., 2021, 4, 67-100. (JCR Q1, IF=32.804);
5) 通讯. MOF-derived CoFe alloy nanoparticles encapsulated within N,O Co-doped multilayer graphitized shells as an efficient bifunctional catalyst for zinc–air batteries, Journal of Materials Chemistry A, 2022, 10, 14866-14874. (JCR Q1, IF=14.511);
6) 通讯. Understanding the functions and modifications of interfaces in membrane electrode assemblies of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2021, 9, 15111. (JCR Q1, IF=14.511);
7) 通讯.Recent Advances in Pt-based Octahedral Nanocrystals as High Performance Fuel Cell Catalysts. J. Mater. Chem. A, 2016, 4: 11559-11581. (JCR Q1, IF=14.511);
8) 第一.Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack, Applied Energy, 2022, 314: 119020. https://doi.org/10.1016/j.apenergy.2022.119020 (JCR Q1, IF=11.446);
9) 通讯.Power evolution of fuel cell stack driven by anode gas diffusion layer degradation, Applied Energy, 2022, 313: 118858. https://doi.org/10.1016/j.apenergy.2022.118858 (JCR Q1, IF=11.446);
10) 通讯.Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle, Applied Energy, 2021, 303: 117688. DOI:10.1016/j.apenergy.2021.117688 (JCR Q1, IF=11.446);
11) 通讯.Effect of Dispersion Solvents and Ionomers on the Rheology of Catalyst Inks and Catalyst Layer Structure for Proton Exchange Membrane Fuel Cells. ACS Appl Mater Interfaces, 2021, 13: 27119-27128. (JCR Q1, IF=10.383);
12) 通讯. Preparation of a Graphitized-Carbon-Supported PtNi Octahedral Catalyst and Application in a Proton-Exchange Membrane Fuel Cell, ACS Applied Materials & Interfaces, 2020, 12: 7047-7056. (JCR Q1, IF=10.383);
13) 通讯.Advanced Reversal Tolerant Anode in Proton Exchange Membrane Fuel Cells: Study on the Attenuation Mechanism during Fuel Starvation. ACS Appl Mater Interfaces, 2021, 13 (2): 2455-2461. (JCR Q1, IF=10.383);
14) 第一.High performance octahedral PtNi/C catalyst investigated from rotating disk electrode to membrane electrode assembly. Nano Research, 2019,12(2): 281-287. (JCR Q1, IF=10.269);
15) 通讯. Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle, Journal of Power Sources, 2021, 515:230655. (JCR Q1, IF=9.794);
16) 通讯. From rotating disk electrode to single cell: exploration of PtNi/C octahedral nanocrystal as practical PEMFC cathode catalyst. J. Power Sources, 2018, 406: 118-127. (JCR Q1, IF=9.794);
17) 通讯. Rapid activation of a full-length proton exchange membrane fuel cell stack with a novel intermittent oxygen starvation method, Energy, 2022, 260: 125154, (JCR Q1, IF=8.857);
18) 通讯. Investigation of the reversible performance degradation mechanism of the PEMFC stack during long-term durability test, Energy, 2022, 258: 124747 (JCR Q1, IF=8.857);
19) 通讯. Experimental study of the influence of dynamic load cycle and operating parameters on the durability of PEMFC, Energy, 2021, 239: 122356, in press (JCR Q1, IF=8.857);
20) 通讯. Performance degradation and process engineering of the 10 kW proton exchange membrane fuel cell stack. Energy, 2021, 219: 119623. (JCR Q1, IF=8.857);
21) 通讯.Property evolution of gas diffusion layer and performance shrink of fuel cell during operation, Renewable Energy, 2022, 194: 596-603. (JCR Q1, IF=8.634);
22) 通讯. Preparation optimization and single cell application of PtNi/C octahedral catalyst with enhanced ORR performance. Electrochim. Acta, 2018, 288: 126-133. (JCR Q1, IF=7.336);
23) 通讯.Improved Electrochemical Performance of Biomass-Derived Nanoporous Carbon/Sulfur Composites Cathode for Lithium-Sulfur Batteries by Nitrogen Doping. Electrochimica Acta, 2016, 202:131-139. (JCR Q1, IF=7.336);
24) 第一. Controlling the microscopic morphology and permeability of catalyst layers in proton exchange membrane fuel cells by adjusting catalyst ink agglomerates, International Journal of Hydrogen Energy, 2021, 46: 32215-32225. (JCR Q2, IF=7.139);
25) 第一.Optimization of cathode microporous layer materials for proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2021, 46 (27): 14674-14686. (JCR Q2, IF=7.139);
26) 通讯. Degradation analysis of the core components of metal plate proton exchange membrane fuel cell stack under dynamic load cycles, International Journal of Hydrogen Energy, 2022, 47: 7432-7442. (JCR Q2, IF=7.139);
27) 通讯. Topology optimization design for the lightweight endplate of proton exchange membrane fuel cell stack clamped with bolts, International Journal of Hydrogen Energy, 2022, 47: 9680-9689. (JCR Q2, IF=7.139);
28) 通讯. Highly active and durable carbon support Pt-rare earth catalyst for proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 2020, 45: 27291-27298. (JCR Q2, IF=7.139);
29) 通讯.Highly Efficient, Cell Reversal Resistant PEMFC Based on PtNi/C Octahedral and OER Composite Catalyst, International Journal of Hydrogen Energy, 2020, 45: 8930-8940. (JCR Q2, IF=7.139);
30) 通讯. Unique spatial effect of Zr-doped ceria on the anti-free radicals and performance of PEMFC. International Journal of Hydrogen Energy, 2021, 46 (39): 20693-20701. (JCR Q2, IF=7.139);
31) 通讯.Review of hydrogen crossover through the polymer electrolyte membrane, International Journal of Hydrogen Energy, 2021, 46: 22040-22061. (JCR Q2, IF=7.139);
32) 通讯. Recent progress of the gas diffusion layer in proton exchange membrane fuel cells: Material and structure designs of microporous layer. International Journal of Hydrogen Energy, 2021, 46 (5): 4259-4282. (JCR Q2, IF=7.139);
33) 通讯. Highly active and durable Pt-Co nanowire networks catalyst for the oxygen reduction reaction in PEMFCs. Int. J. Hydrogen Energy, 2016,41: 18592-18601. (JCR Q2, IF=7.139);
34) 通讯. Effect of rheological properties of catalyst slurry on the structure of catalyst layer in PEMFC, International Journal of Hydrogen Energy, 2022, 47: 8956-8964. (JCR Q2, IF=7.139);
35) 通讯.Effect of mesoporous carbon on oxygen reduction reaction activity as cathode catalyst support for proton exchange membrane fuel cell, International Journal of Hydrogen Energy, 2022, 10.1016/j.ijhydene.2022.06.131. (JCR Q2, IF=7.139);
36) 第一. Simple numerical simulation of catalyst inks dispersion in proton exchange membrane fuel cell by the lattice Boltzmann method, Physics of Fluids, 2021, 33, 115116; doi: 10.1063/5.0061704. (JCR Q1, IF=4.98);
37) 通讯.Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell, Membranes, 2021, 11, 879. (JCR Q1, IF=4.562);
38) 第一.A High-Durability Graphitic Black Pearl Supported Pt Catalyst for a Proton Exchange Membrane Fuel Cell Stack, Membranes, 2022, 12, 301, https://doi.org/10.3390/membranes12030301. (JCR Q1, IF=4.562);
39) 通讯.A Review of the Transition Region of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells: Design, Degradation, and Mitigation, Membranes, 2022, 12, 306, https://doi.org/10.3390/membranes12030306. (JCR Q1, IF=4.562);
40) 通讯.Oxygen doped activated carbon/SnO2 nanohybrid for high performance lithium-ion capacitor. Journal of Electroanalytical Chemistry, 2019, 850: 113398. (JCR Q1, IF=4.598);
41) 通讯.Proton Exchange Membrane Fuel Cell Reversal: A Review, Catalysts 2016, 6(12): 197. (JCR Q2, IF=4.501);
42) 通讯.The synergetic effect of air pollutants and metal ions on performance of a 5 kW proton-exchange membrane fuel cell stack, International Journal of Energy Research, 2021, 45: 7974-7986. (JCR Q1, IF=4.672);
43) 通讯. High-Repetitive Reversal Tolerant Performance of Proton-Exchange Membrane Fuel Cell by Designing a Suitable Anode. ACS Omega, 2020, 5 (17): 10099-10105. (JCR Q2, IF=4.132) ;
44) 通讯.Control of Cluster Structures in Catalyst Inks by a Dispersion Medium, ACS Omega 2021, 6, 32960−32969. (JCR Q2, IF=4.132);
45) 第一.Biomass-derived activated carbon/sulfur composites as cathode electrodes for Li–S batteries by reducing the oxygen content. RSC Advances 2020, 10 (5): 2823-2829. (JCR Q2, IF=4.036) ;
46) 第一. Agricultural waste-derived activated carbon/graphene composites for high performance lithium-ion capacitors, RSC Advances, 2019, 9: 29190 - 29194. (JCR Q2, IF=4.036);
47) 第一.Agricultural waste-derived activated carbon for high performance lithium-ion capacitors. RSC Advances, 2017, 7: 37923-37928. (JCR Q2, IF=4.036);
48) 通讯. Self-assembled silicon/phenolic resin-based carbon core-shell nanocomposite as an anode material for lithium-ion batteries. RSC Adv, 2018, 8: 3477-3482. (JCR Q2, IF=4.036);
49) 通讯. Accelerated Test of Silicone Rubbers Exposing to PEMFC environment. Progress in Natural Science: Materials International 2020, 30 (6): 882-889. (JCR Q2, IF=4.269);
50) 通讯.Carbon-supported Pt-Co nanowires as a novel cathode catalyst for proton exchange membrane fuel cells. Fuel cells, 2017, 17: 635-642. (JCR Q2, IF=2.25)。


展开更多

学校介绍


  同济大学是国家教育部直属重点大学,也是首批被批准成立研究生院、并被列为国家“ 211 工程”和“面向 21 世纪教育振兴行动计划”(985 工程)与上海市重点建设的高水平研究型大学之一。同济大学创建于 1907 年,现已成为拥有理、工、医、文、法、经(济)、管(理)、哲、教(育)9 大门类的研究型、综合性、多功能的现代大学。

  同济大学现设有各类专业学院 22 个,还建有继续教育学院、 职业技术教育学院等,设有经中德政府批准合作培养硕士研究生的中德学院、中德工程学院,与法国巴黎高科大学集团合作举办的中法工程和管理学院等。目前学校共有 81 个本科专业、 140 个硕士点、 7 个硕士专业学位授权点、博士授权点 58 个、 13 个博士后流动站,学校拥有国家级重点学校 10 个。各类学生 5 万多人,教学科研人员 4200 多人,其中有中科院院士 6 人、工程院院士 7 人,具有各类高级职称者 1900 多人,拥有长江学者特聘教授岗位 22 个。作为国家重要的科研中心之一,学校设有国家、省部级重点实验室和工程研究中心等国家科研基地 16 个。学校还设有附属医院和 2 所附属学校。

  近年来同济大学正在探索并逐步形成有自己特色的现代教育思想和办学理念。以本科教育为立校之本,以研究生教育为强校之路。确立“知识、能力、人格”三位一体的全面素质教育和复合型人才培养模式。坚持“人才培养、科学研究、社会服务、国际交往”四大办学功能协调发展,努力强化服务社会的功能,实现大学功能中心化。以国家科技发展战略和地区经济重点需求为指针,促进传统学科高新化、新兴学科强势化、学科交叉集约化。与产业链紧密结合,形成优势学科和相对弱势学科互融共进的学科链和学科群,构建综合性大学的学科体系,其中桥梁工程、海洋地质、城市规划、结构工程、道路交通、车辆工程、环境工程等学科在全国居领先地位。在为国家经济建设和社会发展做贡献的过程中,争取更多的“单项冠军”,提升学校的学术地位和社会声誉。学校正努力建设文理交融、医工结合、科技教育与人文教育协调发展的综合性、研究型、国际知名高水平大学。

  同济大学已建成的校园占地面积 3700 多亩,分五个校区,四平路校区位于上海市四平路,沪西校区位于上海市真南路,沪北校区位于上海市共和新路,沪东校区位于上海市武东路。正在建设中的嘉定校区位于安亭上海国际汽车城内。

  同济大学研究生院简介

  同济大学一贯重视研究生教育,早在 20 世纪 50 年代初即在部分专业招收培养研究生。 1978 年学校恢复招收硕士研究生, 1981 年起招收博士研究生,同年被国务院学位委员会批准为首批有权授予博士、硕士学位的单位。 1986 年经国务院批准试办研究生院, 1996 年经评估正式成立研究生院,成为我国培养高层次专门人才的重要基地之一。同济大学现有一级学科博士学位授权点 12 个,二级学科博士学位授权点 68 个(含自主设置 10 个二级学科博士点),硕士学位授权点 147 个(含自主设置 7 个二级学科硕士点),分属哲学、经济学、法学、教育学、文学、理学、工学、医学、管理学等 9 个学科门类。其中土木工程、建筑学、交通运输工程、海洋科学、环境科学与工程、力学、材料科学与工程等学科处在全国优势和领先地位,机电、管理、理学等学科近年有了长足进展。我校还设有 13 个博士后科研流动站。近些年来,为了适应我国经济建设和社会发展的需要,学校还十分注重培养不同类型、多个层次、多种规格的高层次专门人才。学校既设科学学位,又设工商管理、行政管理、建筑学、临床医学、工程硕士(含 21 个工程领域)、口腔医学等多种专业学位;既培养学术型、研究型研究生,又培养应用型、复合型专业学位研究生;既有在校全日制攻读学位模式,又有在职人员攻读专业硕士学位或以同等学力申请硕士学位、中职教师在职攻读硕士学位、高校教师在职攻读硕士学位模式。此外,还面向社会举办多种专业研究生课程进修班等,充分发挥了我校学科优势和特色,由此形成了多渠道、多规格、多层次的办学模式,取得了良好的社会效益。

  同济大学研究生院是校长领导下具有相对独立职能的研究生教学和行政管理机构,下设招生办公室、管理处、培养处、学位办公室、学科建设办公室和行政办公室。同时,学校党委还专门设立了研究生工作部。学校设有校学位评定委员会,各学院有学位评定分委员会,并设立了各学科、专业委员会,配有学位管理工作秘书、教务员、班主任、研究生教学秘书等教辅人员。研究生院曾多次被评为全国和上海市学位与研究生教育管理工作先进集体。

  二十多年来,同济大学始终把全面提高培养质量作为研究生教育改革的指导思想,在严格质量管理方面采取了一系列切实有效的措施,取得了较好效果。在连续多年全国百篇优秀博士学位论文评选中,有 7 篇入选。同济大学为国家培养了一大批高素质的高级专门人才,至今已授予博士学位 1311 人,硕士学位近 9504 人,其中有相当一部分已成为我国社会主义现代化建设的重要骨干力量。至 2004 年 9 月,在校博士、硕士研究生约达 11000 多人,专业学位硕士生约 2700 人。根据本校研究生教育发展规划, 2006 年计划招收博士生、硕士生(含专业学位研究生)超过 4000 名。同济大学正在为我国经济建设和社会发展输送高层次人才做出更大的贡献。

展开更多

同济大学硕士研究生学费及奖助政策

收费和奖励

1) 按照国务院常务会议精神,从 2014 年秋季学期起,向所有纳入国家招生计划的新入学研究生收取学费。其中:工程管理硕士(125600)、MBA[微博](125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程领域工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)专业学位研究生的学费标准另行公布,其它硕士研究生学费不超过 8000 元/学年。

2) 对非定向就业学术型研究生和非定向就业专业学位硕士研究生,同济大学有完善的奖励体系(工程管理硕士(125600)、MBA(125100)、MPA(125200)、法律硕士(非法学)(035101)、软件工程硕士(085212)、金融硕士(025100)、会计硕士(125300)、翻译硕士(055101、055109)、护理硕士(105400)、教育硕士(045100)、汉语国际教育硕士(045300)、人文学院(210)的艺术硕士(135108)的奖励由培养单位另行制订)。对亍纳入奖励体系的非定向就业学术型硕士生和非定向就业专业学位硕士生在入学时全部都可以获得 8000 元/学年的全额学业奖学金,该奖学金用以抵充学费。对纳入奖励体系的硕士研究生还可获得不少亍 600 元/月的励学金,每年发放10 个月。另外,纳入奖励体系的非定向就业研究生都可以申请励教和励管的岗位,获得额外的资励。所有非定向就业硕士研究生在学期间纳入上海市城镇居民基本医疗保险,可申请办理国家励学贷款,可参加有关专项奖学金评定。

3)工商管理硕士在职班、金融硕士在职班、公共管理硕士、工程管理硕士、会计硕士、护理硕士、教育硕士、汉语国际教育硕士、人文学院的艺术硕士采取在职学习方式,考生录取后,人事关系不人事档案不转入学校,在读期间不参加上海市大学生医疗保障,学校不安排住宿,毕业时不纳入就业计划。

展开更多
点赞
意向报名 前往导师主页